Dealing with Conflicting Requirements in Robot System Engineering: A Laboratory-Based Course

  • Luca Gherardi
  • Davide Brugali
  • Andrea Luzzana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8810)


This paper presents a project-based laboratory for senior-level students in computer engineering that is based on the LEGO Mindstorms kits extended with a set of off-the-shelf microcontrollers and custom electronics. It is organized in an integrated set of projects, which individually cover a subset of typical issues and challenges involved in the development of a complete robotic system. The pedagogical goal is to equip students with an understanding of how engineering of complex projects is a multi-dimensional decision making process and with teamwork and self-learning skills.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borenstein, J.: Experimental results from internal odometry error correction with the omnimate mobile robot. IEEE Transactions on Robotics and Automation 14(6), 963–969 (1998)CrossRefGoogle Scholar
  2. 2.
    Brugali, D.: Exploiting the synergies between robotics and software engineering: A project-based laboratory. In: Global Engineering Education Conference (EDUCON). IEEE (2014)Google Scholar
  3. 3.
    Brugali, D., Gherardi, L., Biziak, A., Luzzana, A., Zakharov, A.: A reuse-oriented development process for component-based robotic systems. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628, pp. 361–374. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Crisman, J.: System design via small mobile robots. IEEE Trans. Educ. (1996)Google Scholar
  5. 5.
    Kim, S., Jeon, J.: Introduction for freshmen to embedded systems using lego mindstorms. IEEE Trans. Educ. 52(1), 99–108 (2009)CrossRefGoogle Scholar
  6. 6.
    Kim, Y.: Control systems lab using a lego mindstorms nxt motor system. IEEE Trans. Educ. 54(3), 452–461 (2011)CrossRefGoogle Scholar
  7. 7.
    Lee, C., Su, J., Lin, K., Chang, J., Lin, G.: A project-based laboratory for learning embedded system design with industry support. IEEE Trans. Educ. (2010)Google Scholar
  8. 8.
    Maxstream XBee ZigBee,
  9. 9.
    O’Grady, M.J.: Practical problem-based learning in computing education. Trans. Comput. Educ. 12(3), 10:1–10:16 (2012)Google Scholar
  10. 10.
    Padir, T., Chernova, S.: Guest editorial special issue on robotics education. IEEE Transactions on Education 56(1), 1–2 (2013)CrossRefGoogle Scholar
  11. 11.
    Papadimitriou, V., Papadopoulos, E.: Putting Low-Cost Commercial Robotics Component to the Test. IEEE Robotics & Automation Magazine 14, 99–110 (2007)CrossRefGoogle Scholar
  12. 12.
    Ruiz del Solar, J.: Robotics-centered outreach activities: An integrated approach. IEEE Trans. Educ. 53(1), 38–45 (2010)CrossRefGoogle Scholar
  13. 13.
    Ruzzenente, M., Koo, M., Nielsen, K., Grespan, L., Fiorini, P.: A review of robotics kits for tertiary education. In: Proc. Int. Workshop Teaching Robot. Teaching Robot., Integr. Robot. School Curric., Riva del Garda, Italy (2012)Google Scholar
  14. 14.
    Tutunji, T., Saleem, A., Rabbo, S.A.: An undergraduate mechatronics project class at philadelphia university, Jordan: Methodology and experience. IEEE Trans. Educ. 52(3), 365–374 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luca Gherardi
    • 1
  • Davide Brugali
    • 2
  • Andrea Luzzana
    • 2
  1. 1.ETH ZürichSwitzerland
  2. 2.University of BergamoBergamoItaly

Personalised recommendations