Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design

  • Adam Wolniakowski
  • Konstantsin Miatliuk
  • Norbert Krüger
  • Jimmy Alison Rytz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8810)


In this paper, we suggest gripper quality metrics that indicate the performance of a gripper given an object CAD model and a task description. Those, we argue, can be used in the design and selection of an appropriate gripper when the task is known. We present three different gripper metrics that to some degree build on existing grasp quality metrics and demonstrate these on a selection of parallel jaw grippers. We furthermore demonstrate the performance of the metrics in three different industrial task contexts.


Success Ratio Automatic Evaluation Grasp Target Kinematic Design Grasp Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanes, C., Mellado, M., Ortiz, C., Valera, A.: Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables. Spanish Journal of Agricultural Research 9(4), 1130–1141 (2011)CrossRefGoogle Scholar
  2. 2.
    Boubekri, N., Chakraborty, P.: Robotic grasping: gripper designs, control methods and grasp configurations – a review of research. Integrated Manufacturing Systems 13(7), 520–531 (2002)CrossRefGoogle Scholar
  3. 3.
    Causey, G.: Guidelines for the design of robotic gripping systems. Assembly Automation 23(1), 18–28 (2003)CrossRefGoogle Scholar
  4. 4.
    Causey, G.C., Quinn, R.D.: Gripper design guidelines for modular manufacturing. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1453–1458. IEEE (1998)Google Scholar
  5. 5.
    Ciocarlie, M., Allen, P.: Data-driven optimization for underactuated robotic hands. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1292–1299. IEEE (2010)Google Scholar
  6. 6.
    Cuadrado, J., Naya, M.A., Ceccarelli, M., Carbone, G.: An optimum design procedure for two-finger grippers: a case of study. IFToMM Electronic Journal of Computational Kinematics 15403(1), 2002 (2002)Google Scholar
  7. 7.
    Ellekilde, L.-P., Jørgensen, J.A., Kraft, D., Krüger, N., Piater, J., Petersen, H.G.: Applying a learning framework for improving success rates in industrial bin picking. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pp. 1–8 (2012)Google Scholar
  8. 8.
    Ellekilde, L.-P., Petersen, H.G.: Design and test of object aligning grippers for industrial applications. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5165–5170. IEEE (2006)Google Scholar
  9. 9.
    Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference on Robotics and Automation (ICRA) (May 1992)Google Scholar
  10. 10.
    Jorgensen, J.A., Ellekilde, L.-P., Petersen, H.G.: RobWorkSim - an open simulator for sensor based grasping. In: Proceedings of Joint 41st International Symposium on Robotics (ISR 2010), Munich, pp. 1–8 (2010)Google Scholar
  11. 11.
    Jørgensen, J.A., Petersen, H.G.: Grasp synthesis for dextrous hands optimised for tactile manipulation. In: Proceedings for the Joint Conference of ISR 2010, pp. 1–6. VDE-Verlag (June 2010)Google Scholar
  12. 12.
    Kraft, D., Ellekilde, L.-P., Jørgensen, J.A.: Automatic grasp generation and improvement for industrial bin-picking. In: Röhrbein, F., Veiga, G., Natale, C. (eds.) Gearing Up and Accelerating Cross-Fertilization between Academic and Industrial Robotics Research in Europe, 2nd edn. STAR, vol. 94, pp. 155–176. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Krenich, S.: Multicriteria design optimization of robot gripper mechanisms. Solid Mechanics and Its Applications, vol. 117, pp. 207–218. Springer, Netherlands (2004)Google Scholar
  14. 14.
    Lanni, C., Ceccarelli, M.: An optimization problem algorithm for kinematic design of mechanisms for two-finger grippers. Open Mechanical Engineering Journal 3, 49–62 (2009)CrossRefGoogle Scholar
  15. 15.
    Rytz, J.A., Ellekilde, L.-P., Kraft, D., Petersen, H.G., Krüger, N.: On transferability of grasp-affordances in data-driven grasping. In: Proceedings of the RAAD 2013 22nd International Workshop on Robotics in Alpe-Adria-Danube Region (August 2013)Google Scholar
  16. 16.
    Stulp, F., Theodorou, E., Buchli, J., Schaal, S.: Learning to grasp under uncertainty. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5703–5708 (2011)Google Scholar
  17. 17.
    Suárez, R., Roa, M., Cornella, J.: Grasp quality measures. Technical report, Technical University of Catalonia (2006)Google Scholar
  18. 18.
    Weisz, J., Allen, P.K.: Pose error robust grasping from contact wrench space metrics. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 557–562. IEEE (2012)Google Scholar
  19. 19.
    Zhang, M.T., Goldberg, K.: Designing robot grippers: optimal edge contacts for part alignment. Robotica 25(03), 341 (2006)CrossRefGoogle Scholar
  20. 20.
    Zhang, T.: Optimal Design of Self-aligning Robot Gripper Jaws. PhD thesis, AAI3044755 (2001)Google Scholar
  21. 21.
    Zhang, T., Cheung, L., Goldberg, K.: Shape tolerance for robot gripper jaws. In: IROS, pp. 1782–1787 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Adam Wolniakowski
    • 1
  • Konstantsin Miatliuk
    • 1
  • Norbert Krüger
    • 2
  • Jimmy Alison Rytz
    • 2
  1. 1.Automation and Robotics DeptartmentBialystok University of TechnologyPoland
  2. 2.The Maersk Mc-Kinney Moller Institute, Faculty of EngineeringUniversity of Southern DenmarkDenmark

Personalised recommendations