Simulation and HRI Recent Perspectives with the MORSE Simulator

  • Séverin Lemaignan
  • Marc Hanheide
  • Michael Karg
  • Harmish Khambhaita
  • Lars Kunze
  • Florian Lier
  • Ingo Lütkebohle
  • Grégoire Milliez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8810)

Abstract

Simulation in robotics is often a love-hate relationship: while simulators do save us a lot of time and effort compared to regular deployment of complex software architectures on complex hardware, simulators are also known to evade many of the real issues that robots need to manage when they enter the real world. Because humans are the paragon of dynamic, unpredictable, complex, real world entities, simulation of human-robot interactions may look condemn to fail, or, in the best case, to be mostly useless. This collective article reports on five independent applications of the MORSE simulator in the field of human-robot interaction: It appears that simulation is already useful, if not essential, to successfully carry out research in the field of HRI, and sometimes in scenarios we do not anticipate.

Keywords

Real Robot Virtual Human Object Arrangement Real World Entity Automate Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breazeal, C., DePalma, N., Orkin, J., Chernova, S., Jung, M.: Crowdsourcing human-robot interaction: New methods and system evaluation in a public environment. Journal of Human-Robot Interaction 2(1), 82–111 (2013)CrossRefGoogle Scholar
  2. 2.
    Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P., Lesire, C., Stinckwich, S.: Simulating complex robotic scenarios with MORSE. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 197–208. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Garrell, A., Sanfeliu, A.: Model validation: Robot behavior in people guidance mission using DTM model and estimation of human motion behavior. IEEE Transactions on Intelligent Robots and Systems (IROS), 5836–5841 (2010)Google Scholar
  4. 4.
    Gratch, J., Rickel, J., André, E., Cassell, J., Petajan, E., Badler, N.: Creating interactive virtual humans: Some assembly required. IEEE Intelligent Systems 17(4), 54–63 (2002)CrossRefGoogle Scholar
  5. 5.
    Guzzi, J., Giusti, A., Gambardella, L.M., Theraulaz, G., Di Caro, G.A.: Human-friendly robot navigation in dynamic environments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 423–430. IEEE (2013)Google Scholar
  6. 6.
    Henry, P., Vollmer, C., Ferris, B., Fox, D.: Learning to navigate through crowded environments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 981–986. IEEE (2010)Google Scholar
  7. 7.
    Hoffman, G., Breazeal, C.: Effects of anticipatory perceptual simulation on practiced human-robot tasks. Autonomous Robots 28(4), 403–423 (2010)CrossRefGoogle Scholar
  8. 8.
    Karg, M., Kirsch, A.: An expectations framework for domestic robot assistants. In: Conference on Advances in Cognitive Systems, pp. 77–92 (2013)Google Scholar
  9. 9.
    Kidokoro, H., Kanda, T., Brscic, D., Shiomi, M.: Will I bother here? – A robot anticipating its influence on pedestrian walking comfort. In: 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 259–266. IEEE (2013)Google Scholar
  10. 10.
    Knepper, R.A., Rus, D.: Pedestrian-inspired sampling-based multi-robot collision avoidance. In: 21st IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 94–100. IEEE (2012)Google Scholar
  11. 11.
    Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154. IEEEGoogle Scholar
  12. 12.
    Kunze, L., Kumar, K., Hawes, N.: Indirect object search based on qualitative spatial relations. In: IEEE International Conference on Robotics and Automation (ICRA), May 31-June 7 (2014)Google Scholar
  13. 13.
    Lemaignan, S., Karg, M., Mainprice, M., Kirsch, A., Alami, R.: Human-robot interaction in the MORSE simulator. In: 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI). Late Breaking Reports (2012)Google Scholar
  14. 14.
    Lewis, M., Wang, J., Hughes, S.: USARSim: Simulation for the study of human-robot interaction. Journal of Cognitive Engineering and Decision Making 1(1), 98–120 (2007)CrossRefGoogle Scholar
  15. 15.
    Lier, F., Lütkebohle, I., Wachsmuth, S.: Towards automated execution and evaluation of simulated prototype HRI experiments. In: 9th ACM/IEEE Conference on Human-Robot Interaction (HRI). Late Breaking Reports (2014)Google Scholar
  16. 16.
    Milliez, G., Ferreira, E., Fiore, M., Alami, R., Lefèvre, F.: Simulating human-robot interactions for dialogue strategy learning. In: Brugali, D., Broenink, J., Kroeger, T., MacDonald, B. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 62–73. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Milliez, G., Warnier, M., Clodic, A., Alami, R.: A framework for endowing interactive robot with reasoning capabilities about perspective-taking and belief management. In: Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication (2014)Google Scholar
  18. 18.
    Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. Transactions on Robotics 23(5), 874–883 (2007)CrossRefGoogle Scholar
  19. 19.
    Sun, R.: Cognition and multi-agent interaction: From cognitive modeling to social simulation. Cambridge University Press (2006)Google Scholar
  20. 20.
    Szymanezyk, O., Duckett, T., Dickinson, P.: Agent-based crowd simulation in airports using games technology. In: Nguyen, N.-T. (ed.) Transactions on CCI VIII. LNCS, vol. 7430, pp. 192–213. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Kruse, T., Khambhaita, H., Kirsch, A., Alami, R.: Evaluating directional cost models in navigation. In: 9th ACM/IEEE Conference on Human-Robot Interaction (HRI), Bielefeld, Germany (2014)Google Scholar
  22. 22.
    Trafton, G., Hiatt, L., Harrison, A., Tamborello, F., Khemlani, S., Schultz, A.: Act-R/E: An embodied cognitive architecture for human-robot interaction. Journal of Human-Robot Interaction 2(1), 30–55 (2013)CrossRefGoogle Scholar
  23. 23.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on Graphics (TOG) 25, 1160–1168 (2006)CrossRefGoogle Scholar
  24. 24.
    Wang, J., Lewis, M., Hughes, S., Koes, M., Carpin, S.: Validating USARsim for use in HRI research. Human Factors and Ergonomics Society Annual Meeting 49(3), 457–461 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Séverin Lemaignan
    • 1
  • Marc Hanheide
    • 2
  • Michael Karg
    • 3
  • Harmish Khambhaita
    • 4
  • Lars Kunze
    • 5
  • Florian Lier
    • 6
  • Ingo Lütkebohle
    • 7
  • Grégoire Milliez
    • 4
  1. 1.CHILI LabEPFLLausanneSwitzerland
  2. 2.Centre for Autonomous SystemsUniversity of LincolnUK
  3. 3.IASTechnische Universität MünchenGermany
  4. 4.LAAS/CNRSUniversité de ToulouseFrance
  5. 5.Intelligent Robotics LabUniversity of BirminghamUK
  6. 6.CITECBielefeld UniversityGermany
  7. 7.Machine Learning and Robotics LabUniversität StuttgartGermany

Personalised recommendations