Role of the Kynurenine Pathway in Immune-Mediated Inflammation

  • Adam P. Cribbs
  • Richard O. Williams


Indoleamine 2,3-dioxygenase (IDO) plays a key role in immune homeostasis via depletion of tryptophan and accumulation of kynurenines and is recognized as an important factor contributing to suppression of antitumor immune responses. However, the possibility of harnessing the IDO pathway for the therapy of autoimmune disease represents an intriguing possibility, and in this review, we highlight recent research on the involvement of IDO in immune-mediated inflammatory diseases, with a focus on rheumatoid arthritis. Inhibition of IDO was shown to exacerbate experimental arthritis and increase numbers of pathogenic Th1 and Th17 cells in the joints and draining lymph nodes. Analysis of the kinetics of expression of kynurenine pathway enzymes in animal models also pointed to a potential role for tryptophan metabolites in disease resolution and administration of l-kynurenine or [3,4-dimethoxycinnamonyl]-anthranilic acid (a synthetic derivative of 3-hydroxyanthranilic acid) reduced the severity of disease. A more recent study has identified an association between defective regulatory T cells in rheumatoid arthritis with reduced capacity to activate the kynurenine pathway. These findings suggest that strategies to activate IDO in a targeted manner may be effective in the therapy of autoimmune disease.


Rheumatoid arthritis Collagen-induced arthritis Indoleamine 2,3-dioxygenase Inflammation Autoimmunity 

List of Abbreviations


1-methyl tryptophan


Antigen-presenting cells


Aryl hydrocarbon receptor


Collagen-induced arthritis


Cytotoxic T-lymphocyte-associated protein 4


Dendritic cell


Disease-modifying anti-rheumatic drugs


Experimental autoimmune encephalomyelitis


G-protein-coupled receptor 35


Genome-wide association studies


Indoleamine 2,3-dioxygenase




Interleukin 1


Interferon-regulatory factor




Major histocompatibility complex


Natural killer


Nonobese diabetic


Nuclear factor of activated T cells


Plasmacytoid DCs


Regulatory T cells


Rheumatoid arthritis


Signal transducer and activator of transcription 1


T cell receptor


T helper


Transforming growth factor


Tryptophan 2,3-dioxygenase




Tumor necrosis factor


Type 1 diabetes



This work was supported by the Kennedy Trust for Rheumatology Research.


  1. 1.
    Pfefferkorn ER. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A. 1984;81(3):908–12.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Pfefferkorn ER, Guyre PM. Inhibition of growth of Toxoplasma gondii in cultured fibroblasts by human recombinant gamma interferon. Infect Immun. 1984;44(2):211–16.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3.CrossRefPubMedGoogle Scholar
  4. 4.
    Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 2003;24(5):242–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Suzuki T, Yokouchi K, Kawamichi H, Yamamoto Y, Uda K, Yuasa HJ. Comparison of the sequences of Turbo and Sulculus indoleamine dioxygenase-like myoglobin genes. Gene. 2003;308:89–94.CrossRefPubMedGoogle Scholar
  6. 6.
    Taylor MW, Feng GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5(11):2516–22.PubMedGoogle Scholar
  7. 7.
    Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today. 1999;20(10):469–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Dai W, Gupta SL. Regulation of indoleamine 2,3-dioxygenase gene expression in human fibroblasts by interferon-gamma. Upstream control region discriminates between interferon-gamma and interferon-alpha. J Biol Chem. 1990;265(32):19871–7.PubMedGoogle Scholar
  9. 9.
    Hassanain HH, Chon SY, Gupta SL. Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-gamma and -alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor. J Biol Chem. 1993;268(7):5077–84.PubMedGoogle Scholar
  10. 10.
    Chon SY, Hassanain HH, Gupta SL. Cooperative role of interferon regulatory factor 1 and p91 (STAT1) response elements in interferon-gamma-inducible expression of human indoleamine 2,3-dioxygenase gene. J Biol Chem. 1996;271(29):17247–52.CrossRefPubMedGoogle Scholar
  11. 11.
    Silva NM, Rodrigues CV, Santoro MM, Reis LF, Alvarez-Leite JI, Gazzinelli RT. Expression of indoleamine 2,3-dioxygenase, tryptophan degradation, and kynurenine formation during in vivo infection with Toxoplasma gondii: induction by endogenous gamma interferon and requirement of interferon regulatory factor 1. Infect Immun. 2002;70(2):859–68.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Fujigaki S, Saito K, Sekikawa K, Tone S, Takikawa O, Fujii H, et al. Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-gamma-independent mechanism. Eur J Immunol. 2001;31(8):2313–18. doi:10.1002/1521-4141(200108)31:8<2313::AID-IMMU2313>3.0.CO;2-S.CrossRefPubMedGoogle Scholar
  13. 13.
    Yuan W, Collado-Hidalgo A, Yufit T, Taylor M, Varga J. Modulation of cellular tryptophan metabolism in human fibroblasts by transforming growth factor-beta: selective inhibition of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA synthetase gene expression. J Cell Physiol. 1998;177(1):174–86. doi:10.1002/(SICI)1097-4652(199810)177:1<174::AID-JCP18>3.0.CO;2-D.CrossRefPubMedGoogle Scholar
  14. 14.
    Jung ID, Lee MG, Chang JH, Lee JS, Jeong YI, Lee CM, et al. Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharide-induced endotoxin shock. J Immunol. 2009;182(5):3146–54. doi: 10.4049/jimmunol.0803104.CrossRefPubMedGoogle Scholar
  15. 15.
    Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol. 2002;3(11):1097–101. doi: 10.1038/ni846.CrossRefPubMedGoogle Scholar
  16. 16.
    Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, et al. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol. 2003;171(4):1652–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol. 2004;172(7):4100–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Mellor AL, Chandler P, Baban B, Hansen AM, Marshall B, Pihkala J, et al. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol. 2004;16(10):1391–401. doi: 10.1093/intimm/dxh140.CrossRefPubMedGoogle Scholar
  19. 19.
    Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4(12):1206–12. doi: 10.1038/ni1003.CrossRefPubMedGoogle Scholar
  20. 20.
    Baban B, Hansen AM, Chandler PR, Manlapat A, Bingaman A, Kahler DJ, et al. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int Immunol. 2005;17(7):909–19. doi: 10.1093/intimm/dxh271.CrossRefPubMedGoogle Scholar
  21. 21.
    Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189(9):1363–72.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Grohmann U, Puccetti P. The immunosuppressive activity of proinflammatory cytokines in experimental models: potential for therapeutic intervention in autoimmunity. Curr Drug Targets Inflamm Allergy. 2002;1(1):77–87.CrossRefPubMedGoogle Scholar
  23. 23.
    Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22(5):633–42. doi: 10.1016/j.immuni.2005.03.013.CrossRefPubMedGoogle Scholar
  24. 24.
    Wek SA, Zhu S, Wek RC. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol. 1995;15(8):4497–506.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6(5):1099–108.CrossRefPubMedGoogle Scholar
  26. 26.
    Terness P, Chuang JJ, Opelz G. The immunoregulatory role of IDO-producing human dendritic cells revisited. Trends Immunol. 2006;27(2):68–73. doi: 10.1016/ Scholar
  27. 27.
    Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002;196(4):447–57.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9(10):1069–77. doi: 10.1038/sj.cdd.4401073.CrossRefPubMedGoogle Scholar
  29. 29.
    Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Morita T, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H, et al. L-tryptophan-kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions. Adv Exp Med Biol. 1999;467:559–63.CrossRefPubMedGoogle Scholar
  31. 31.
    Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006;176(11):6752–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Hill M, Tanguy-Royer S, Royer P, Chauveau C, Asghar K, Tesson L, et al. IDO expands human CD4 + CD25high regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur J Immunol. 2007;37(11):3054–62. doi: 10.1002/eji.200636704.CrossRefPubMedGoogle Scholar
  33. 33.
    Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185(6):3190–8. doi: 10.4049/jimmunol.0903670.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A. 2010;107(46):19961–6. doi: 10.1073/pnas.1014465107.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Tiszlavicz Z, Nemeth B, Fulop F, Vecsei L, Tapai K, Ocsovszky I, et al. Different inhibitory effects of kynurenic acid and a novel kynurenic acid analogue on tumour necrosis factor-alpha (TNF-alpha) production by mononuclear cells, HMGB1 production by monocytes and HNP1-3 secretion by neutrophils. Naunyn Schmiedebergs Arch Pharmacol. 2011;383(5):447–55. doi: 10.1007/s00210-011-0605-2.CrossRefPubMedGoogle Scholar
  36. 36.
    Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol. 2010;185(10):5953–61. doi: 10.4049/jimmunol.1001628.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell. 1996;85(3):307–10.CrossRefPubMedGoogle Scholar
  38. 38.
    Winchester R. The molecular basis of susceptibility to rheumatoid arthritis. Adv Immunol. 1994;56:389–466.CrossRefPubMedGoogle Scholar
  39. 39.
    Orozco G, Rueda B, Martin J. Genetic basis of rheumatoid arthritis. Biomed Pharmacother. 2006;60(10):656–62. doi: 10.1016/j.biopha.2006.09.003.CrossRefPubMedGoogle Scholar
  40. 40.
    Suzuki A, Kochi Y, Okada Y, Yamamoto K. Insight from genome-wide association studies in rheumatoid arthritis and multiple sclerosis. FEBS Lett. 2011;585(23):3627–32. doi: 10.1016/j.febslet.2011.05.025.CrossRefPubMedGoogle Scholar
  41. 41.
    Trentham DE. Collagen arthritis as a relevant model for rheumatoid arthritis. Arthritis Rheum. 1982;25(8):911–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat Protoc. 2007;2(5):1269–75. doi: 10.1038/nprot.2007.173.CrossRefPubMedGoogle Scholar
  43. 43.
    Brand DD, Whittington KB, Rosloniec EF. I-Aq and I-Ap bind and present similar antigenic peptides despite differing in their ability to mediate susceptibility to autoimmune arthritis. Autoimmunity. 2001;34(2):133–45.CrossRefPubMedGoogle Scholar
  44. 44.
    Criado G, Simelyte E, Inglis JJ, Essex D, Williams RO. Indoleamine 2,3 dioxygenase-mediated tryptophan catabolism regulates accumulation of Th1/Th17 cells in the joint in collagen-induced arthritis. Arthritis Rheum. 2009;60(5):1342–51. doi: 10.1002/art.24446.CrossRefPubMedGoogle Scholar
  45. 45.
    Williams RO. Exploitation of the IDO pathway in the therapy of rheumatoid arthritis. Int J Tryptophan Res. 2013;6 Suppl 1:67–73. doi: 10.4137/IJTR.S11737.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Kolodziej L. An exploratory study of the interplay between decreased concentration of tryptophan, accumulation of kynurenines, and inflammatory arthritis. IUBMB Life. 2012;64(12):983–7. doi: 10.1002/iub.1092.CrossRefPubMedGoogle Scholar
  47. 47.
    Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int. 2005;18(1):95–100. doi: 10.1111/j.1432-2277.2004.00031.x.CrossRefPubMedGoogle Scholar
  48. 48.
    Szanto S, Koreny T, Mikecz K, Glant TT, Szekanecz Z, Varga J. Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates collagen-induced arthritis in mice. Arthritis Res Ther. 2007;9(3):R50. doi: 10.1186/ar2205.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Baban B, Chandler P, McCool D, Marshall B, Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol. 2004;61(2):67–77. doi: 10.1016/j.jri.2003.11.003.CrossRefPubMedGoogle Scholar
  50. 50.
    Scott GN, DuHadaway J, Pigott E, Ridge N, Prendergast GC, Muller AJ, et al. The immunoregulatory enzyme IDO paradoxically drives B cell-mediated autoimmunity. J Immunol. 2009;182(12):7509–17. doi: 10.4049/jimmunol.0804328.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Pigott E, Mandik-Nayak L. Addition of an indoleamine 2,3,-dioxygenase inhibitor to B cell-depletion therapy blocks autoreactive B cell activation and recurrence of arthritis in K/BxN mice. Arthritis Rheum. 2012;64(7):2169–78. doi: 10.1002/art.34406.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Forrest CM, Kennedy A, Stone TW, Stoy N, Darlington LG. Kynurenine and neopterin levels in patients with rheumatoid arthritis and osteoporosis during drug treatment. Adv Exp Med Biol. 2003;527:287–95.CrossRefPubMedGoogle Scholar
  53. 53.
    Schroecksnadel K, Kaser S, Ledochowski M, Neurauter G, Mur E, Herold M, et al. Increased degradation of tryptophan in blood of patients with rheumatoid arthritis. J Rheumatol. 2003;30(9):1935–9.PubMedGoogle Scholar
  54. 54.
    Schroecksnadel K, Winkler C, Duftner C, Wirleitner B, Schirmer M, Fuchs D. Tryptophan degradation increases with stage in patients with rheumatoid arthritis. Clin Rheumatol. 2006;25(3):334–7. doi: 10.1007/s10067-005-0056-6.CrossRefPubMedGoogle Scholar
  55. 55.
    Parada-Turska J, Zgrajka W, Majdan M. Kynurenic acid in synovial fluid and serum of patients with rheumatoid arthritis, spondyloarthropathy, and osteoarthritis. J Rheumatol. 2013;40(6):903–9. doi: 10.3899/jrheum.121035.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhu L, Ji F, Wang Y, Zhang Y, Liu Q, Zhang JZ, et al. Synovial autoreactive T cells in rheumatoid arthritis resist IDO-mediated inhibition. J Immunol. 2006;177(11):8226–33.CrossRefPubMedGoogle Scholar
  57. 57.
    Puccetti P, Grohmann U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol. 2007;7(10):817–23. doi: 10.1038/nri2163.CrossRefPubMedGoogle Scholar
  58. 58.
    Cribbs AP, Kennedy A, Penn H, Read JE, Amjadi P, Green P, et al. Regulatory T cell function in rheumatoid arthritis is compromised by CTLA-4 promoter methylation resulting in a failure to activate the IDO pathway. Arthritis Rheumatol. 2014. doi: 10.1002/art.38715.PubMedGoogle Scholar
  59. 59.
    Bernard NJ. Rheumatoid arthritis: who knows why regulatory T cells are defective in RA … IDO. Nat Rev Rheumatol. 2014;10(7):381. doi: 10.1038/nrrheum.2014.96.CrossRefPubMedGoogle Scholar
  60. 60.
    Sakurai K, Zou JP, Tschetter JR, Ward JM, Shearer GM. Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2002;129(1–2):186–96.CrossRefPubMedGoogle Scholar
  61. 61.
    Saxena V, Ondr JK, Magnusen AF, Munn DH, Katz JD. The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J Immunol. 2007;179(8):5041–53.CrossRefPubMedGoogle Scholar
  62. 62.
    Grohmann U, Fallarino F, Bianchi R, Orabona C, Vacca C, Fioretti MC, et al. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J Exp Med. 2003;198(1):153–60. doi: 10.1084/jem.20030633.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Fallarino F, Bianchi R, Orabona C, Vacca C, Belladonna ML, Fioretti MC, et al. CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J Exp Med. 2004;200(8):1051–62. doi: 10.1084/jem.20040942.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    You S, Belghith M, Cobbold S, Alyanakian MA, Gouarin C, Barriot S, et al. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes. 2005;54(5):1415–22.CrossRefPubMedGoogle Scholar
  65. 65.
    van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50(9):2775–85. doi: 10.1002/art.20499.CrossRefPubMedGoogle Scholar
  66. 66.
    Matysiak M, Stasiolek M, Orlowski W, Jurewicz A, Janczar S, Raine CS, et al. Stem cells ameliorate EAE via an indoleamine 2,3-dioxygenase (IDO) mechanism. J Neuroimmunol. 2008;193(1–2):12–23. doi: 10.1016/j.jneuroim.2007.07.025.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Iannitti RG, Carvalho A, Cunha C, De Luca A, Giovannini G, Casagrande A, et al. Th17/Treg imbalance in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines. Am J Respir Crit Care Med. 2013;187(6):609–20. doi: 10.1164/rccm.201207-1346OC.CrossRefPubMedGoogle Scholar
  68. 68.
    Inglis JJ, Criado G, Andrews M, Feldmann M, Williams RO, Selley ML. The anti-allergic drug, N-(3’,4’-dimethoxycinnamonyl) anthranilic acid, exhibits potent anti-inflammatory and analgesic properties in arthritis. Rheumatology (Oxford). 2007;46(9):1428–32. doi: 10.1093/rheumatology/kem160.CrossRefGoogle Scholar
  69. 69.
    Opitz CA, Wick W, Steinman L, Platten M. Tryptophan degradation in autoimmune diseases. Cell Mol Life Sci. 2007;64(19–20):2542–63. doi: 10.1007/s00018-007-7140-9.CrossRefPubMedGoogle Scholar
  70. 70.
    Xue ZT, Sjogren HO, Salford LG, Widegren B. An epigenetic mechanism for high, synergistic expression of indoleamine 2,3-dioxygenase 1 (IDO1) by combined treatment with zebularine and IFN-gamma: potential therapeutic use in autoimmune diseases. Mol Immunol. 2012;51(2):101–11. doi: 10.1016/j.molimm.2012.01.006.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
  2. 2.Botnar Research Centre, Institute of musculoskeletal SciencesOxfordUK

Personalised recommendations