Design of the Human-Robot Interaction for a Semi-Autonomous Service Robot to Assist Elderly People

  • Marcus Mast
  • Michael Burmester
  • Birgit Graf
  • Florian Weisshardt
  • Georg Arbeiter
  • Michal Španěl
  • Zdeněk Materna
  • Pavel Smrž
  • Gernot Kronreif
Chapter
Part of the Advanced Technologies and Societal Change book series (ATSC)

Abstract

Service robots could support elderly people’s activities of daily living and enable them to live in their own residences independently as long as possible. Current robot technology does not allow reliable fully autonomous operation of service robots with manipulation capabilities in the heterogeneous environments of private homes. We developed and evaluated a usage concept for semi-autonomous robot control as well as user interfaces for three user groups. Elderly people are provided with simple access to autonomous robot services through a handheld device. In case of problems with autonomous execution the robot contacts informal caregivers (e.g. relatives) who can support the robot using semi-autonomous teleoperation. To solve more complex problems, professional teleoperators are contacted who have extended remote access.

Keywords

Human-robot interaction Service robots Teleoperation Semi-autonomy User interface design 

References

  1. 1.
    Eckert, J.K., Morgan, L.A., Swamy, N.: Preferences for receipt of care among community-dwelling adults. J. Aging Soc. Policy 16, 49–65 (2004)CrossRefGoogle Scholar
  2. 2.
    Baltes, P.B.: Über die Zukunft des Alterns: Hoffnung mit Trauerflor. In: Baltes, M., Montada, L. (eds.) Produktives Leben im Alter, pp. 29–68. Frankfurt Campus, Frankfurt (1996)Google Scholar
  3. 3.
    Ezer, N., Fisk, A.D., Rogers, W.A.: More than a servant: self-reported willingness of younger and older adults to having a robot perform interactive and critical tasks in the home. In: Proceedings of the Human Factors and Ergonomics Society 53rd Annual Meeting, pp. 136–140 (2009)Google Scholar
  4. 4.
    Mast, M., Burmester, M., Berner, E., Facal. D., Pigni, L., Blasi, L.: Semi-autonomous teleoperated learning in-home service robots for elderly care: a qualitative study on needs and perceptions of elderly people, family caregivers, and professional caregivers. In: Proceedings of the 20th International Conference on Robotics and Mechatronics, pp. 1–6. Varna, Bulgaria (2010)Google Scholar
  5. 5.
    Meyer, S.: Mein Freund der Roboter. Servicerobotik für ältere Menschen – eine Antwort auf den demografischen Wandel? Berlin: VDE-Verlag (2011)Google Scholar
  6. 6.
    Graf, B., Heyer, T., Klein, B., Wallhoff, F.: Servicerobotik für den demografischen Wandel. Mögliche Einsatzfelder und aktueller Entwicklungsstand. In Bundesgesundheitsblatt, vol. 56, pp. 1145–1152. Springer, Berlin (2013)Google Scholar
  7. 7.
    Pollack, M.E., Brown, L., Colbry, D., Orosz, C., Peintner, B., Ramakrshnan, S., Roy, N.: Pearl: a mobile robotic assistant for the elderly. In: AAAI Workshop on Automation as Caregiver. Technical Report WS-02-02 (2002)Google Scholar
  8. 8.
    Michaud, F., Boissy, P., Labonté, D., Brière, S., Perreault, K., Corriveau, H., Létourneau, D.: Exploratory design and evaluation of a homecare teleassistive mobile robotic system. Mechatronics 20, 751–766 (2010)Google Scholar
  9. 9.
    Wada, K., Shibata, T., Asada, T., Musha, T.: Robot therapy for prevention of dementia at home—results of preliminary experiment. J. Robot. Mechatron. 19, 691–697 (2007)Google Scholar
  10. 10.
    Tribelhorn, B., Dodds, Z.: Evaluating the Roomba: a low-cost, ubiquitous platform for robotics research and education. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp 1393–1399, Rome, Italy (2007)Google Scholar
  11. 11.
    Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., et al.: Towards autonomous robotic butlers: lessons learned with the PR2. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 5568–5575. Shanghai, China (2011)Google Scholar
  12. 12.
    Graf, B., Parlitz, C., Hägele, M.: Robotic home assistant Care-O-bot 3 product vision and innovation platform. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part II, HCI International 2009, LNCS, San Diego, CA, USA, vol. 5611, pp. 312–320. Springer, Berlin (2009)Google Scholar
  13. 13.
    Mast, M., Burmester, M., Krüger, K., Fatikow, S., Arbeiter, G., Graf, B., Kronreif, G., Pigini, L., Facal, D., Qiu, R.: User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home. J. Hum. Robot. Interact. 1, 96–118 (2012)CrossRefGoogle Scholar
  14. 14.
    Campbell, C.L., Peters, R.A., Bodenheimer, R.E., Bluethmann, W.J., Huber, R., Ambrose, R.O.: Superpositioning of behaviors learned through teleoperation. IEEE Trans. Rob. 22, 79–91 (2006)CrossRefGoogle Scholar
  15. 15.
    Nehaniv, C.L., Dautenhahn, K. (eds.): Imitation and Social Learning in Robots, Humans and animals. Behavioural, Social and Communicative Dimensions. Cambridge University Press, Cambridge, UK (2007)Google Scholar
  16. 16.
    SRS: Multi-Role Shadow Robotic System for Independent Living. srs-project.euGoogle Scholar
  17. 17.
    Graf, B., Hans, M., Schraft, R.D.: Mobile robot assistants—issues for dependable operation in direct cooperation with humans. IEEE Robot. Autom. Mag. 11, 67–77 (2004)CrossRefGoogle Scholar
  18. 18.
    Fischer, J., Arbeiter, G., Bormann, R., Verl, A.: A framework for object training and 6DoF pose estimation. In: Proceedings of the ROBOTIK, pp. 513–518 (2012)Google Scholar
  19. 19.
    Kunz, T., Reiser, U., Stilman, M., Verl, A.: Real-time path planning for a robot arm in changing environments. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 5906–5911. Taipei, Taiwan (2010)Google Scholar
  20. 20.
    Qiu, R., Ji, Z., Noyvirt, A., Soroka, A., Setchi, R., Pham, D.T., Xu, S., Shivarov, N., Pigini, L., Arbeiter, G., Weisshardt, F., Graf, B., Mast, M., et al.: Towards robust personal assistant robots: experience gained in the SRS project. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1651–1657. Vilamoura, Portugal (2012)Google Scholar
  21. 21.
    ISO 9241-210: Ergonomics of human-system interaction - part 210: Human-centred design for interactive systems. ISO (2010) Google Scholar
  22. 22.
    Mast, M., Španěl, M., Arbeiter, G., Štancl, V., Materna, Z., Weisshardt, F., Burmester, M., Smrž, P., Graf, B.: Teleoperation of domestic service robots: effects of global 3D environment maps in the user interface on operators’ cognitive and performance metrics. In Hermann, G. et al. (eds.) International Conference on Social Robotics (ICSR), Bristol, UK. Lecture Notes in Artificial Intelligence 8239, pp. 392–401. Springer, Switzerland (2013) Google Scholar
  23. 23.
    Kohli, M., Künemund, H., Lüdicke, J.: Family structure, proximity and contact. In: Börsch-Supan et al. (eds.) Health, Ageing and Retirement in Europe, pp. 164–170. MEA, Mannheim (2005)Google Scholar
  24. 24.
    Hourcade, J.P., Berkel, T.R.: Tap or touch? Pen-based selection accuracy for the young and old. In: Proceedings of the CHI, pp. 881–886 (2006)Google Scholar
  25. 25.
    Sharkey, A., Sharkey, N.: Granny and the robots: ethical issues in robot care for the elderly. Ethics Inf. Technol. 14, 27–40 (2012)CrossRefGoogle Scholar
  26. 26.
    Dumas, J.C., Fox, J.E.: Usability testing: current practice and future directions. In: Jacko, J.A., Sears, A. (eds.) The Handbook of Human-Computer Interaction, 2nd edn, pp. 1129–1149. Lawrence Erlbaum, Mahwah, New Jersey (2008)Google Scholar
  27. 27.
    Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pp. 2149–2154 (2004)Google Scholar
  28. 28.
    Nielsen, C.W., Goodrich, M.A., Ricks, R.W.: Ecological interfaces for improving mobile robot teleoperation. IEEE Trans. Rob. 23, 927–941 (2007)CrossRefGoogle Scholar
  29. 29.
    ROS documentation—RViz: http://wiki.ros.org/rviz
  30. 30.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Rob. 34, 189–206 (2013)CrossRefGoogle Scholar
  31. 31.
    Arbeiter, G., Bormann, R., Fischer, J., Hägele, M., Verl, A.: Towards geometric mapping for semi-autonomous robots. In: Stachniss, C., Schill, K., Uttal, D. (eds.) Spatial Cognition 2012. LNAI, vol. 7463, pp. 114–127. Springer, Berlin (2012)Google Scholar
  32. 32.
    Burmester, M., Hassenzahl, M., Koller, F.: Engineering attraktiver Produkte – AttrakDiff. In: Ziegler, J., Beinhauer, W. (eds.) Interaktion mit komplexen Informationsräumen, pp. 127–141. Oldenbourg, München (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marcus Mast
    • 1
    • 2
  • Michael Burmester
    • 1
  • Birgit Graf
    • 3
  • Florian Weisshardt
    • 3
  • Georg Arbeiter
    • 3
  • Michal Španěl
    • 4
  • Zdeněk Materna
    • 4
  • Pavel Smrž
    • 4
  • Gernot Kronreif
    • 5
  1. 1.Stuttgart Media UniversityStuttgartGermany
  2. 2.Linköping UniversityLinköpingSweden
  3. 3.Fraunhofer Institute for Manufacturing Engineering and AutomationStuttgartGermany
  4. 4.Brno University of TechnologyBrnoCzech Republic
  5. 5.Austrian Center for Medical Innovation and TechnologyWiener NeustadtAustria

Personalised recommendations