Improve the 3-flip Neighborhood Local Search by Random Flat Move for the Set Covering Problem

  • Chao Gao
  • Thomas Weise
  • Jinlong Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8794)

Abstract

The 3-flip neighborhood local search (3FNLS) is an excellent heuristic algorithm for the set covering problem which has dominating performance on the most challenging crew scheduling instances from Italy railways. We introduce a method to further improve the effectiveness of 3FNLS by incorporating random flat move to its search process. Empirical studies show that this can obviously improve the solution qualities of 3FNLS on the benchmark instances. Moreover, it updates two best known solutions within reasonable time.

Keywords

Set Covering Problem 3-flip Local Search Random Flat Move 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balas, E., Carrera, M.C.: A dynamic subgradient-based branch-and-bound procedure for set covering. Operations Research 44(6), 875–890 (1996)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Beasley, J.E.: Or-library: distributing test problems by electronic mail. Journal of the Operational Research Society, 1069–1072 (1990)Google Scholar
  3. 3.
    Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94(2), 392–404 (1996)CrossRefMATHGoogle Scholar
  4. 4.
    Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Operations Research 47(5), 730–743 (1999)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Annals of Operations Research 98(1-4), 353–371 (2000)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ceria, S., Nobili, P., Sassano, A.: A lagrangian-based heuristic for large-scale set covering problems. Mathematical Programming 81(2), 215–228 (1998)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Feo, T.A., Resende, M.G.: A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters 8(2), 67–71 (1989)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Fisher, M.L.: The lagrangian relaxation method for solving integer programming problems. Management Science 27(1), 1–18 (1981)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness (1979)Google Scholar
  11. 11.
    Jacobs, L.W., Brusco, M.J.: Note: A local-search heuristic for large set-covering problems. Naval Research Logistics 42(7), 1129–1140 (1995)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Lan, G., De Puy, G.W., Whitehouse, G.E.: An effective and simple heuristic for the set covering problem. European Journal of Operational Research 176(3), 1387–1403 (2007)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Lessing, L., Dumitrescu, I., Stützle, T.: A comparison between aco algorithms for the set covering problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Ren, Z.G., Feng, Z.R., Ke, L.J., Zhang, Z.J.: New ideas for applying ant colony optimization to the set covering problem. Computers & Industrial Engineering 58(4), 774–784 (2010)CrossRefGoogle Scholar
  15. 15.
    Smith, B.M., Wren, A.: A bus crew scheduling system using a set covering formulation. Transportation Research Part A: General 22(2), 97–108 (1988)CrossRefGoogle Scholar
  16. 16.
    Sundar, S., Singh, A.: A hybrid heuristic for the set covering problem. Operational Research 12(3), 345–365 (2012)CrossRefMATHGoogle Scholar
  17. 17.
    Vasko, F.J.: An efficient heuristic for large set covering problems. Naval Research Logistics Quarterly 31(1), 163–171 (1984)CrossRefMATHGoogle Scholar
  18. 18.
    Yagiura, M., Kishida, M., Ibaraki, T.: A 3-flip neighborhood local search for the set covering problem. European Journal of Operational Research 172(2), 472–499 (2006)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chao Gao
    • 1
  • Thomas Weise
    • 1
  • Jinlong Li
    • 1
  1. 1.School of Computer Science and TechnologyUniversity of Science and Technology of China (USTC)HefeiChina

Personalised recommendations