A New Bio-inspired Algorithm: Chicken Swarm Optimization

  • Xianbing Meng
  • Yu Liu
  • Xiaozhi Gao
  • Hengzhen Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8794)


A new bio-inspired algorithm, Chicken Swarm Optimization (CSO), is proposed for optimization applications. Mimicking the hierarchal order in the chicken swarm and the behaviors of the chicken swarm, including roosters, hens and chicks, CSO can efficiently extract the chickens’ swarm intelligence to optimize problems. Experiments on twelve benchmark problems and a speed reducer design were conducted to compare the performance of CSO with that of other algorithms. The results show that CSO can achieve good optimization results in terms of both optimization accuracy and robustness. Future researches about CSO are finally suggested.


Hierarchal order Chickens’ behaviors Swarm intelligence Chicken Swarm Optimization Optimization applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang, X.S.: Bat algorithm: literature review and applications. International Journal of Bio-inspired Computation 5(3), 141–149 (2013)CrossRefGoogle Scholar
  2. 2.
    Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)CrossRefGoogle Scholar
  3. 3.
    Jordehi, A.R., Jasni, J.: Parameter selection in particle swarm optimization: A survey. Journal of Experimental & Theoretical Artificial Intelligence 25(4), 527–542 (2013)CrossRefGoogle Scholar
  4. 4.
    Gandomi, A.H., Alavi, A.H.: Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation 17, 4831–4845 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Cuevas, E., Cienfuegos, M., Zaldivar, D., Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications 40, 6374–6384 (2013)CrossRefGoogle Scholar
  6. 6.
    Smith, C.L., Zielinski, S.L.: The Startling Intelligence of the Common Chicken. Scientific American 310(2) (2014)Google Scholar
  7. 7.
    Grillo, R.: Chicken Behavior: An Overview of Recent Science,
  8. 8.
  9. 9.
    Tan, Y., Li, J.Z., Zheng, Z.Y.: ICSI, Competition on Single Objective Optimization (2014),
  10. 10.
    Yang, X.S.: Nature-inspired optimization algorithm. Elsevier (2014)Google Scholar
  11. 11.
    Robert, R., Mostafa, A.: Embedding a social fabric component into cultural algorithms toolkit for an enhanced knowledge-driven engineering optimization. International Journal of Intelligent Computing and Cybernetic 1(4), 563–597 (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Mezura, M.E., Hernandez, O.B.: Modified bacterial foraging optimization for engineering design. In: Proceedings of the Artificial Neural Networks in Engineering Conference, vol. 19, pp. 357–364. Intelligent Engineering Systems Through Artificial Neural Networks (2009)Google Scholar
  13. 13.
    Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing 23(4), 1001–1014 (2012)CrossRefGoogle Scholar
  14. 14.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers 29, 17–35 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xianbing Meng
    • 1
    • 2
  • Yu Liu
    • 2
  • Xiaozhi Gao
    • 1
    • 3
  • Hengzhen Zhang
    • 1
  1. 1.College of Information EngineeringShanghai Maritime UniversityShanghaiP.R. China
  2. 2.Chengdu Green Energy and Green Manufacturing R&D CenterChengduP.R. China
  3. 3.Department of Electrical Engineering and AutomationAalto University School of Electrical EngineeringAaltoFinland

Personalised recommendations