Fast Computation of the Tree Edit Distance between Unordered Trees Using IP Solvers

  • Seiichi Kondo
  • Keisuke Otaki
  • Madori Ikeda
  • Akihiro Yamamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8777)


We propose a new method for computing the tree edit distance between two unordered trees by problem encoding. Our method transforms an instance of the computation into an instance of some IP problems and solves it by an efficient IP solver. The tree edit distance is defined as the minimum cost of a sequence of edit operations (either substitution, deletion, or insertion) to transform a tree into another one. Although its time complexity is NP-hard, some encoding techniques have been proposed for computational efficiency. An example is an encoding method using the clique problem. As a new encoding method, we propose to use IP solvers and provide new IP formulations representing the problem of finding the minimum cost mapping between two unordered trees, where the minimum cost exactly coincides with the tree edit distance. There are IP solvers other than that for the clique problem and our method can efficiently compute ariations of the tree edit distance by adding additional constraints. Our experimental results with Glycan datasets and the Web log datasets CSLOGS show that our method is much faster than an existing method if input trees have a large degree. We also show that two variations of the tree edit distance could be computed efficiently by IP solvers.


tree edit distance unordered tree IP formulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achterberg, T.: Scip: Solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009), MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akutsu, T., Tamura, T., Fukagawa, D., Takasu, A.: Efficient exponential time algorithms for edit distance between unordered trees. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 360–372. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bixby, E.R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: theory and practice-closing the gap. In: Powell, M.J.D., Scholtes, S. (eds.) System Modelling and Optimization: Methods, Theory, and Applications. IFIP, vol. 46, pp. 19–49. Springer, Boston (2000)CrossRefGoogle Scholar
  4. 4.
    Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed integer programming: a progress report. In: The Sharpest Cut: The Impact of Manfred Padberg and His Work. MPS-SIAM Series on Optimization, vol. 4, pp. 309–326 (2004)Google Scholar
  5. 5.
    Daiji, F., Takeyuki, T., Atushiro, T., Etsuji, T., Tatsuya, A.: A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures. BMC Bioinformatics 12 (2011)Google Scholar
  6. 6.
    Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, 2nd edn. Society for Industrial Mathematics (2008)Google Scholar
  7. 7.
    Higuchi, S., Kan, T., Yamamoto, Y., Hirata, K.: An A* algorithm for computing edit distance between rooted labeled unordered trees. In: Okumura, M., Bekki, D., Satoh, K. (eds.) JSAI-isAI 2012. LNCS, vol. 7258, pp. 186–196. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Horesh, Y., Mehr, R., Unger, R.: Designing an A* algorithm for calculating edit distance between rooted-unordered trees. Journal of Computational Biology 13(6), 1165–1176 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
  10. 10.
    Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between rna structures. Journal of Computational Biology 9(2), 371–388 (2002)CrossRefGoogle Scholar
  11. 11.
    Kan, T., Higuchi, S., Hirata, K.: Segmental mapping and distance for rooted labeled ordered trees. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 485–494. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Kanehisa, M., Goto, S.: Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28(1), 27–30 (2000)CrossRefGoogle Scholar
  13. 13.
    Kuboyama, T.: Matching and learning in trees. Ph.D Thesis (The University of Tokyo) (2007)Google Scholar
  14. 14.
    Mori, T., Tamura, T., Fukagawa, D., Takasu, A., Tomita, E., Akutsu, T.: An improved clique-based method for computing edit distance between rooted unordered trees. SIG-BIO 2011(3), 1–6 (2011)Google Scholar
  15. 15.
    Shasha, D., Wang, J.L., Zhang, K., Shih, F.Y.: Exact and approximate algorithms for unordered tree matching. IEEE Transactions on Systems, Man and Cybernetics 24(4), 668–678 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tai, K.C.: The tree-to-tree correction problem. Journal of the ACM (JACM) 26(3), 422–433 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Valiente, G.: An efficient bottom-up distance between trees. In: Proceedings of the 8th International Symposium of String Processing and Information Retrieval, pp. 212–219. Press (2001)Google Scholar
  18. 18.
    Zaki, M.J.: Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE Transactions on Knowledge and Data Engineering 17(8), 1021–1035 (2005)CrossRefGoogle Scholar
  19. 19.
    Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Information Processing Letters 42(3), 133–139 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhang, K., Shasha, D., Wang, J.T.L.: Approximate tree matching in the presence of variable length don’t cares. Journal of Algorithms 16(1), 33–66 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Seiichi Kondo
    • 1
  • Keisuke Otaki
    • 1
  • Madori Ikeda
    • 1
  • Akihiro Yamamoto
    • 1
  1. 1.Graduate School of InformaticsKyoto UniversitySakyo-kuJapan

Personalised recommendations