On Stabilizing Departures in Overlay Networks

  • Dianne Foreback
  • Andreas Koutsopoulos
  • Mikhail Nesterenko
  • Christian Scheideler
  • Thim Strothmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8756)


A fundamental problem for peer-to-peer systems is to maintain connectivity while nodes are leaving, i.e., the nodes requesting to leave the peer-to-peer system are excluded from the overlay network without affecting its connectivity. There are a number of studies for safe node exclusion if the overlay is in a well-defined state initially. Surprisingly, the problem is not formally studied yet for the case in which the overlay network is in an arbitrary initial state, i.e., when looking for a self-stabilizing solution for excluding leaving nodes. We study this problem in two variants: the Finite Departure Problem ( \(\mathcal{FDP}\) ) and the Finite Sleep Problem ( \(\mathcal{FSP}\) ). In the \(\mathcal{FDP}\) the leaving nodes have to irrevocably decide when it is safe to leave the network, whereas in the \(\mathcal{FSP}\), this leaving decision does not have to be final: the nodes may resume computation if necessary. We show that there is no self-stabilizing distributed algorithm for the \(\mathcal{FDP}\), even in a synchronous message passing model. To allow a solution, we introduce an oracle called \(\mathcal{NIDEC}\) and show that it is sufficient even for the asynchronous message passing model by proposing an algorithm that can solve the \(\mathcal{FDP}\) using \(\mathcal{NIDEC}\). We also show that a solution to the \(\mathcal{FSP}\) does not require an oracle.


Directed Path Overlay Network Legitimate State Incoming Link Relevant Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht, K., Kuhn, F., Wattenhofer, R.: Dependable peer-to-peer systems withstanding dynamic adversarial churn. In: Kohlas, J., Meyer, B., Schiper, A. (eds.) Dependable Systems: Software, Computing, Networks. LNCS, vol. 4028, pp. 275–294. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. In: SOSP, pp. 131–145. ACM, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Aspnes, J., Shah, G.: Skip graphs. ACM Transactions on Algorithms 3(4), 37 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Awerbuch, B., Scheideler, C.: The hyperring: A low-congestion deterministic data structure for distributed environments. In: SODA, pp. 318–327. Society for Industrial and Applied Mathematics, Philadelphia (2004)Google Scholar
  5. 5.
    Awerbuch, B., Scheideler, C.: Towards scalable and robust overlay networks. In: IPTPS (2007)Google Scholar
  6. 6.
    Awerbuch, B., Scheideler, C.: Towards a scalable and robust dht. Theory Comput. Syst. 45(2), 234–260 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benter, M., Divband, M., Kniesburges, S., Koutsopoulos, A., Graffi, K.: Ca-re-chord: A churn resistant self-stabilizing chord overlay network. In: NetSys, pp. 27–34 (2013)Google Scholar
  8. 8.
    Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks with the transitive closure framework. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 62–76. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: A dynamic overlay network for routing, data management, and multicasting. In: SPAA, pp. 170–179. ACM, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Bianchi, S., Datta, A., Felber, P., Gradinariu, M.: Stabilizing peer-to-peer spatial filters. In: ICDCS, p. 27. IEEE Computer Society, Washington, DC (2007)Google Scholar
  11. 11.
    Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing prefix tree for peer-to-peer systems. Parallel Processing Letters 20(1), 15–30 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dolev, D., Hoch, E.N., van Renesse, R.: Self-stabilizing and byzantine-tolerant overlay network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 343–357. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. In: NCA, pp. 25–32 (2004)Google Scholar
  16. 16.
    Dolev, S., Tzachar, N.: Spanders: Distributed spanning expanders. Sci. Comput. Program. 78(5), 544–555 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Time complexity of distributed topological self-stabilization: The case of graph linearization. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 294–305. Springer, Heidelberg (2010)Google Scholar
  19. 19.
    Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A scalable overlay network with practical locality properties. In: USENIX Symposium on Internet Technologies and Systems (2003)Google Scholar
  20. 20.
    Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: A distributed data structure for low stretch under adversarial attack. Distributed Computing 25(4), 261–278 (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Herault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief announcement: Self-stabilizing spanning tree algorithm for large scale systems. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 574–575. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131–140 (2009)Google Scholar
  23. 23.
    Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional topological self-stabilization: A distributed algorithm for delaunay graphs. Theor. Comput. Sci. 457, 137–148 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: A self-stabilizing chord overlay network. In: SPAA, pp. 235–244 (2011)Google Scholar
  25. 25.
    Kuhn, F., Schmid, S., Wattenhofer, R.: Towards worst-case churn resistant peer-to-peer systems. Distributed Computing 22(4), 249–267 (2010)CrossRefzbMATHGoogle Scholar
  26. 26.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the butterfly. In: PODC, pp. 183–192. ACM, New York (2002)Google Scholar
  27. 27.
    Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: A stabilizing deterministic message-passing skip list. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 356–370. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Nor, R.M., Nesterenko, M., Tixeuil, S.: Linearizing peer-to-peer systems with oracles. Technical Report TR-KSU-CS-2012-02, Dept. of Computer Science, Kent State University (July 2012)Google Scholar
  29. 29.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-addressable network. In: SIGCOMM, pp. 161–172. ACM, New York (2001)Google Scholar
  30. 30.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  31. 31.
    Saia, J., Trehan, A.: Picking up the pieces: Self-healing in reconfigurable networks. In: IPDPS, pp. 1–12 (2008)Google Scholar
  32. 32.
    Scheideler, C.: How to spread adversarial nodes?: rotate. In: STOC, pp. 704–713 (2005)Google Scholar
  33. 33.
    Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In: Peer-to-Peer Computing, pp. 39–46 (2005)Google Scholar
  34. 34.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dianne Foreback
    • 1
  • Andreas Koutsopoulos
    • 2
  • Mikhail Nesterenko
    • 1
  • Christian Scheideler
    • 2
  • Thim Strothmann
    • 2
  1. 1.Kent State UniversityUSA
  2. 2.University of PaderbornGermany

Personalised recommendations