Advertisement

2D Thinning Algorithms with Revised Endpixel Preservation

  • Gábor NémethEmail author
  • Péter Kardos
  • Kálmán Palágyi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8814)

Abstract

Skeletons are shape descriptors that summarize the general forms of objects. Thinning is a frequently applied technique for digital binary pictures to extract skeleton-like shape features. Most of the existing thinning algorithms preserve endpixels that provide relevant geometrical information relative to the shape of the objects. The drawback of this approach is that it may produce numerous unwanted side branches. In this paper we propose a novel strategy to overcome this problem. We present a thinning strategy, where some endpixels can be deleted.

Keywords

Shape represantation Thinning Endpixel revision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernard, T., Manzanera, A.: Improved low complexity fully parallel thinning algorithm. In: 10th International Conference on Image Analysis and Processing (ICIP 1999), pp. 215–220 (1999)Google Scholar
  2. 2.
    Bertrand, G., Aktouf, Z.: A three-dimensional thinning algorithm using subfields. In: Vision Geometry III, vol. 2356, pp. 113–124. SPIE (1994)Google Scholar
  3. 3.
    Hall, R.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–179. Elsevier Science B. V. (1996)Google Scholar
  4. 4.
    Kong, T.Y.: On topology preservation in 2-d and 3-d thinning. Int. Journal of Pattern Recognition and Artificial Intelligence 9, 813–844 (1995)CrossRefGoogle Scholar
  5. 5.
    Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  6. 6.
    Németh, G., Kardos, P., Palágyi, K.: 2D parallel thinning and shrinking based on sufficient conditions for topology preservation. Acta Cybernetica 20, 125–144 (2011)zbMATHGoogle Scholar
  7. 7.
    Németh, G., Kardos, P., Palágyi, K.: Thinning combined with iteration-by-iteration smoothing for 3D binary images. Graphical Models 73, 335–345 (2011)CrossRefGoogle Scholar
  8. 8.
    Palágyi, K., Németh, G., Kardos, P.: Topology preserving parallel 3D thinning algorithms. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms. Lecture Notes in Computational Vision and Biomechanics, vol. 2, ch. 6, pp. 165–188. Springer (2012)Google Scholar
  9. 9.
    Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discrete Applied Mathematics 21, 67–79 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Siddiqi, K., Pizer, S.M. (eds.): Medial Representations - Mathematics, Algorithms, and Applications. Series in Computational Imaging. Springer (2008)Google Scholar
  11. 11.
    Suen, C.Y., Wang, P.S.P. (eds.): Thinning Methodologies for Pattern Recognition. Series in Machine Perception and Artificial Intelligence, vol. 8. World Scientific (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gábor Németh
    • 1
    Email author
  • Péter Kardos
    • 1
  • Kálmán Palágyi
    • 1
  1. 1.Institute of InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations