Person Re-identification Using Region Covariance in a Multi-feature Approach

  • Volker Eiselein
  • Gleb Sternharz
  • Tobias Senst
  • Ivo Keller
  • Thomas Sikora
Conference paper

DOI: 10.1007/978-3-319-11755-3_9

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8815)
Cite this paper as:
Eiselein V., Sternharz G., Senst T., Keller I., Sikora T. (2014) Person Re-identification Using Region Covariance in a Multi-feature Approach. In: Campilho A., Kamel M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science, vol 8815. Springer, Cham

Abstract

Person re-identification is an important requirement for modern video surveillance systems and relevant for human tracking, especially over camera networks. Many different approaches have been proposed but a robust identification under real-life conditions still remains hard. In this paper we investigate the fusion of multiple person descriptors in order to increase the performance using complementary feature vectors. As an additional improvement to state-of-the-art region covariance descriptors, an extension of the comparison metric is proposed which increases the robustness and performance of the system in cases of rank deficiency. The proposed system is evaluated on the well-known benchmarks CAVIAR4REID, VIPeR, ETHZ and PRID 2011 and shows significant improvements over existing re-identification algorithms.

Keywords

Person re-identification Region covariance Surf Information fusion Color Histogram Covariance metric Generalized Eigenvalues 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Volker Eiselein
    • 1
  • Gleb Sternharz
    • 1
  • Tobias Senst
    • 1
  • Ivo Keller
    • 1
  • Thomas Sikora
    • 1
  1. 1.Communication Systems GroupTechnische Universität BerlinBerlinGermany

Personalised recommendations