Advertisement

Adopting Feature-Based Visual Odometry for Resource-Constrained Mobile Devices

  • Michał Fularz
  • Michał Nowicki
  • Piotr Skrzypczyński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8815)

Abstract

In many practical applications of mobile devices self-localization of the user in a GPS-denied indoor environment is required. Among the available approaches the visual odometry concept enables continuous, precise egomotion estimation in previously unknown environments. In this paper we examine the usual pipeline of a monocular visual odometry system, identifying the bottlenecks and demonstrating how to circumvent the resource constrains, to implement a real-time visual odometry system on a smartphone or tablet.

Keywords

Mobile device Visual odometry Self-localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, S., Matthews, I.: Lucas-Kanade 20 Years on: A Unifying Framework. Int. Journal of Computer Vision 56(3), 221–255 (2004)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded up Robust Features. Comp. Vis. and Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  4. 4.
    Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast Semi-Direct Monocular Visual Odometry. In: Proc. IEEE Int. Conf. on Robotics & Automation, Hong-Kong (to appear, 2014)Google Scholar
  5. 5.
    Fraundorfer, F., Scaramuzza, D.: Visual Odometry: Part II - Matching, Robustness and Applications. IEEE Robotics & Automation Magazine 19(2), 78–90 (2012)CrossRefGoogle Scholar
  6. 6.
    Hongdong, L., Hartley, R.: Five-Point Motion Estimation Made Easy. In: Proc. 18th Int. Conf. on Pattern Recognition (ICPR), pp. 630–633 (2006)Google Scholar
  7. 7.
    Klein, G., Murray, D.: Parallel Tracking and Mapping on a Camera Phone. In: Proc. IEEE/ACM Int. Symp. on Mixed and Augmented Reality (ISMAR 2009), pp. 83–86 (2009)Google Scholar
  8. 8.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. of Comp. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  9. 9.
    Nistér, D., Naroditsky, O., Bergen, J.: Visual Odometry. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 652–659 (2004)Google Scholar
  10. 10.
    Nowicki, M., Skrzypczyński, P.: Performance Comparison of Point Feature Detectors and Descriptors for Visual Navigation on Android Platform. In: Proc. IEEE IWCMC 2014, Nicosia (to appear, 2014)Google Scholar
  11. 11.
    Porzi, L., Ricci, E., Ciarfuglia, T., Zanin, M.: Visual-Inertial Tracking on Android for Augmented Reality Applications. In: IEEE Workshop on Environmental Energy and Structural Monitoring Systems, pp. 35–41 (2012)Google Scholar
  12. 12.
    Quigley, M., Stavens, D., Coates, A., Thrun, S.: Sub-Meter Indoor Localization in Unmodified Environments with Inexpensive Sensors. In: Proc. IEEE/RSJ Int. Conf. on IROS, Taipei, pp. 2039–2046 (2010)Google Scholar
  13. 13.
    Rosten, E., Drummond, T.W.: Machine Learning for High-Speed Corner Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  14. 14.
    Scaramuzza, D., Fraundorfer, F.: Visual Odometry: Part I - the First 30 Years and Fundamentals. IEEE Robotics & Automation Magazine 18(4), 80–92 (2011)CrossRefGoogle Scholar
  15. 15.
    Schmidt, A., Kraft, M., Fularz, M., Domagala, Z.: Comparative Assessment of Point Feature Detectors in the Context of Robot Navigation. JAMRIS 7(1), 11–20 (2013)Google Scholar
  16. 16.
    Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A Benchmark for the Evaluation of RGB-D SLAM Systems. In: Proc. IEEE/RSJ Int. Conf. on IROS, Vilamoura, pp. 573–580 (2012)Google Scholar
  17. 17.
    Yang, X., Cheng, K.T.: LDB: An Ultra-Fast Feature for Scalable Augmented Reality on Mobile Devices. In: Proc. ISMAR 2012, Atlanta, pp. 49–57 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michał Fularz
    • 1
  • Michał Nowicki
    • 1
  • Piotr Skrzypczyński
    • 1
  1. 1.Institute of Control and Information EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations