Truncated Signed Distance Function: Experiments on Voxel Size

  • Diana Werner
  • Ayoub Al-Hamadi
  • Philipp Werner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8815)


Real-time 3D reconstruction is a hot topic in current research. Several popular approaches are based on the truncated signed distance function (TSDF), a volumetric scene representation that allows for integration of multiple depth images taken from different viewpoints. Aiming at a deeper understanding of TSDF we discuss its parameters, conduct experiments on the influence of voxel size on reconstruction accuracy and derive practical recommendations.


TSDF KinectFusion 3D reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondarev, E., Heredia, F., Favier, R., Ma, L., de With, P.H.: On photo-realistic 3D reconstruction of large-scale and arbitrary-shaped environments. In: 2013 IEEE Consumer Communications and Networking Conference (CCNC), pp. 621–624. IEEE (2013)Google Scholar
  2. 2.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 303–312. ACM, New York (1996)Google Scholar
  3. 3.
    Hemmat, H.J., Bondarev, E., de With, P.H.N.: Exploring distance-aware weighting strategies for accurate reconstruction of voxel-based 3D synthetic models. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014, Part I. LNCS, vol. 8325, pp. 412–423. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568. ACM (2011)Google Scholar
  5. 5.
    Microsoft: Kinect (2014),
  6. 6.
    Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: real-time dense surface mapping and tracking. In: Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, pp. 127–136. IEEE Computer Society, Washington, DC (2011)Google Scholar
  7. 7.
    Paulsen, R.R., Bærentzen, J.A., Larsen, R.: Regularisation of 3D signed distance fields. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 513–519. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Roth, H., Vona, M.: Moving volume KinectFusion. In: Proceedings of the British Machine Vision Conference, pp. 1–11. BMVA Press (2012)Google Scholar
  9. 9.
    Whelan, T., Johannsson, H., Kaess, M., Leonard, J.J., McDonald, J.: Robust tracking for real-time dense RGB-D mapping with kintinuous. Technical Report 031. MIT-CSAIL (2012),
  10. 10.
    Whelan, T., Johannsson, H., Kaess, M., Leonard, J.J., McDonald, J.: Robust real-time visual odometry for dense RGB-D mapping. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5724–5731. IEEE (2013)Google Scholar
  11. 11.
    Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous: Spatially extended KinectFusion. Technical Report 020. MIT-CSAIL (2012),
  12. 12.
    Willow Garage and other contributors: Open source implementation of KinectFusion in PCL 1.7.1 (2014),

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of MagdeburgMagdeburgGermany

Personalised recommendations