Semi-Global Matching: A Principled Derivation in Terms of Message Passing

  • Amnon Drory
  • Carsten Haubold
  • Shai Avidan
  • Fred A. Hamprecht
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8753)

Abstract

Semi-global matching, originally introduced in the context of dense stereo, is a very successful heuristic to minimize the energy of a pairwise multi-label Markov Random Field defined on a grid. We offer the first principled explanation of this empirically successful algorithm, and clarify its exact relation to belief propagation and tree-reweighted message passing. One outcome of this new connection is an uncertainty measure for the MAP label of a variable in a Markov Random Field.

References

  1. 1.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  2. 2.
    Frank, M., Plaue, M., Hamprecht, F.A.: Denoising of continuous-wave time-of-flight depth images using confidence measures. Opt. Eng. 48(7), 077003 (2009)CrossRefGoogle Scholar
  3. 3.
    Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361. IEEE (2012)Google Scholar
  4. 4.
    Heskes, T., et al.: Stable fixed points of loopy belief propagation are minima of the bethe free energy. In: Advances in Neural Information Processing Systems 15, pp. 359–366 (2003)Google Scholar
  5. 5.
    Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 807–814. IEEE (2005)Google Scholar
  6. 6.
    Hu, X., Mordohai, P.: Evaluation of stereo confidence indoors and outdoors. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1466–1473. IEEE (2010)Google Scholar
  7. 7.
    Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)CrossRefGoogle Scholar
  8. 8.
    Kohli, P., Torr, P.: Measuring uncertainty in graph cut solutions - efficiently computing min-marginal energies using dynamic graph cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 30–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  10. 10.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefGoogle Scholar
  11. 11.
    Pearl, J.: ProbabIlistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  12. 12.
    Perrollaz, M., Spalanzani, A., Aubert, D.: Probabilistic representation of the uncertainty of stereo-vision and application to obstacle detection. In: 2010 IEEE Intelligent Vehicles Symposium (IV), pp. 313–318. IEEE (2010)Google Scholar
  13. 13.
    Russell, S.J., Norvig, P., Candy, J.F., Malik, J.M., Edwards, D.D.: Artificial Intelligence: A Modern Approach. Prentice-Hall Inc, Upper Saddle River (1996)Google Scholar
  14. 14.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Schraudolph, N.N., Kamenetsky, D.: Efficient exact inference in planar ising models. In: NIPS, pp. 1417–1424 (2008)Google Scholar
  16. 16.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)CrossRefGoogle Scholar
  17. 17.
    Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Map estimation via agreement on trees: message-passing and linear programming. IEEE Trans. Inf. Theor. 51(11), 3697–3717 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. In: Exploring Artificial Intelligence in the New Millennium, pp. 239–269. Morgan Kaufmann Publishers Inc., San Francisco (2003). http://dl.acm.org/citation.cfm?id=779343.779352

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Amnon Drory
    • 1
  • Carsten Haubold
    • 2
  • Shai Avidan
    • 1
  • Fred A. Hamprecht
    • 2
  1. 1.Tel Aviv UniversityTel AvivIsrael
  2. 2.University of HeidelbergHeidelbergGermany

Personalised recommendations