Advertisement

Detection and Segmentation of Clustered Objects by Using Iterative Classification, Segmentation, and Gaussian Mixture Models and Application to Wood Log Detection

  • Christopher Herbon
  • Klaus Tönnies
  • Bernd Stock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8753)

Abstract

There have recently been advances in the area of fully automatic detection of clustered objects in color images. State of the art methods combine detection with segmentation. In this paper we show that these methods can be significantly improved by introducing a new iterative classification, statistical modeling, and segmentation procedure. The proposed method used a detect-and-merge algorithm, which iteratively finds and validates new objects and subsequently updates the statistical model, while converging in very few iterations.

Our new method does not require any a priori information or user input and works fully automatically on desktop computers and mobile devices, such as smartphones and tablets. We evaluate three different kinds of classifiers, which are used to substantially reduce the number of false positive matches, from which current state of the art methods suffer. Experiments are performed on a challenging database depicting wood log piles, with objects of inhomogeneous sizes and shapes. In all cases our method outperforms the current state of the art algorithms with a detection rate above 99 % and a false positive rate of less than 0.4 %.

Keywords

False Positive Rate Gaussian Mixture Model Local Binary Pattern Candidate Object False Detection Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Benfield, M.C., Grosjean, P., Culverhouse, P.F., Irigoien, X., Sieracki, M.E., Lopez-Urrutia, A., Dam, H.G., Hu, Q., Davis, C.S., Hansen, A., et al.: RAPID: research on automated plankton identification. Oceanography 20, 172–187 (2007)CrossRefGoogle Scholar
  2. 2.
    Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings. Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 1, pp. 105–112. IEEE (2001)Google Scholar
  3. 3.
    Buch, N., Orwell, J., Velastin, S.A.: 3D extended histogram of oriented gradients (3DHOG) for classification of road users in urban scenes. In: BMVC. British Machine Vision Association (2009)Google Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893, June 2005Google Scholar
  5. 5.
    Fink, F.: Foto-optische Erfassung der Dimension von Nadelrundholzabschnitten unter Einsatz digitaler, bildverarbeitender Methoden. Ph.D. thesis, Albert-Ludwigs-Universitt (2004)Google Scholar
  6. 6.
    Grau, V., Mewes, A., Alcaniz, M., Kikinis, R., Warfield, S.K.: Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imag. 23(4), 447–458 (2004)CrossRefGoogle Scholar
  7. 7.
    Gutzeit, E., Ohl, S., Kuijper, A., Voskamp, J., Urban, B.: Setting graph cut weights for automatic foreground extraction in wood log images. In: VISAPP (2), pp. 60–67 (2010)Google Scholar
  8. 8.
    Gutzeit, E., Ohl, S., Voskamp, J., Kuijper, A., Urban, B.: Automatic wood log segmentation using graph cuts. In: Richard, P., Braz, J. (eds.) VISIGRAPP 2010. CCIS, vol. 229, pp. 96–109. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Gutzeit, E., Voskamp, J.: Automatic segmentation of wood logs by combining detection and segmentation. In: Bebis, G., et al. (eds.) ISVC 2012, Part I. LNCS, vol. 7431, pp. 252–261. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Herbon, C., Tönnies, K., Stock, B.: Adaptive planar and rotational image stitching for mobile devices. In: Proceedings of the 5th ACM Multimedia Systems Conference, pp. 213–223. ACM (2014)Google Scholar
  11. 11.
    Hu, Q., Davis, C.: Automatic plankton image recognition with co-occurrence matrices and support vector machine. Mar. Ecol. Progr. Ser. 295, 21–31 (2005)CrossRefGoogle Scholar
  12. 12.
    Khan, S.M.: Multi-view approaches to tracking, 3D reconstruction and object class detection. Ph.D. thesis, University of Central Florida (2008)Google Scholar
  13. 13.
    Kim, J.B., Kim, H.J.: Multiresolution-based watersheds for efficient image segmentation. Pattern Recogn. Lett. 24(1), 473–488 (2003)CrossRefGoogle Scholar
  14. 14.
    Lombaert, H., Sun, Y., Grady, L., Xu, C.: A multilevel banded graph cuts method for fast image segmentation. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 1, pp. 259–265. IEEE (2005)Google Scholar
  15. 15.
    Noonpan, V., Chaisricharoen, R.: Wide area estimation of piled logs through image segmentation. In: 2013 13th International Symposium on Communications and Information Technologies (ISCIT), pp. 757–760, Sept 2013Google Scholar
  16. 16.
    Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994, vol. 1 - Conference A: Computer Vision & Image Processing, vol. 1, pp. 582–585, Oct 1994Google Scholar
  17. 17.
    Ongun, G., Halici, U., Leblebicioglu, K., Atalay, V., Beksac, M., Beksaç, S.: An automated differential blood count system. In: Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE, vol. 3, pp. 2583–2586. IEEE (2001)Google Scholar
  18. 18.
    Piuri, V., Scotti, F.: Morphological classification of blood leucocytes by microscope images. In: 2004 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2004. CIMSA, pp. 103–108. IEEE (2004)Google Scholar
  19. 19.
    Rahman, S., Yella, S., Dougherty, M.: Image processing technique to count the number of logs in a timber truck. In: Proceedings of the IASTED Conference on Signal and Image Processing, USA (2011)Google Scholar
  20. 20.
    Ross, N.E., Pritchard, C.J., Rubin, D.M., Duse, A.G.: Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med. Biol. Eng. Comput. 44(5), 427–436 (2006)CrossRefGoogle Scholar
  21. 21.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. I-511–I-518 (2001)Google Scholar
  22. 22.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)CrossRefGoogle Scholar
  23. 23.
    Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Technical report, Microsoft Research (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christopher Herbon
    • 1
  • Klaus Tönnies
    • 2
  • Bernd Stock
    • 1
  1. 1.HAWK Fakultät Naturwissenschaften und TechnikGöttingenGermany
  2. 2.Institut für Simulation und GraphikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations