Facet Tree for Personalized Web Documents Organization

  • Róbert Móro
  • Mária Bieliková
  • Roman Burger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8786)


Vast amount information and resources in the digital libraries and in general on the Web demands effective methods of archiving and organization. However, most of the existing solutions support only very specific use case scenarios, or are not flexible enough to accommodate to the changes in the document collections over time. We propose a method for web documents organization based on a facet view of the personal information structure. Facet chaining in a tree can create any depth of the structure and thus specify any context of resources. We enhanced this method by clustering similar resources and by using a special Search facet that allows users to specify arbitrary keyword queries as an input for collection’s categorization. In order to evaluate the proposed approach, we carried out a user study in the bookmarking system Annota.


digital library personal information management facet tree web document clustering user study empirical evaluation Annota 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elsweiler, D., Baillie, M., Ruthven, I.A.N.: On Understanding the Relationship between Recollection and Refinding. Journal of Digital Information 10(5), 1–31 (2009)Google Scholar
  2. 2.
    Helic, D., Körner, C., Granitzer, M., Strohmaier, M., Trattner, C.: Navigational Efficiency of Broad vs. Narrow Folksonomies. In: HT 2012: Proc. of the 23rd ACM Conf. on Hypertext and Social Media, pp. 63–72. ACM Press, New York (2012)Google Scholar
  3. 3.
    Henderson, S., Srinivasan, A.: Filing, Piling & Structuring: Strategies for Personal Document Management. In: IEEE Proc. of 44th Hawaii Int. Conf. on System Sciences, pp. 1530–1605. IEEE Press (2011)Google Scholar
  4. 4.
    Kelly, D.: Evaluating Personal Information Management Behaviors and Tools. Communications of the ACM 49(1), 84–86 (2006)CrossRefGoogle Scholar
  5. 5.
    Miao, Y., Kešelj, V., Milios, E.: Document Clustering Using Character N-grams. In: CIKM 2005: Proc. of the 14th ACM Int. Conf. on Information and Knowledge Management, pp. 357–358. ACM Press, New York (2005)Google Scholar
  6. 6.
    Molnár, S., Móro, R., Bieliková, M.: Trending Words in Digital Library for Term Cloud-based Navigation. In: SMAP 2013: Proc. of the 8th Int. Workshop on Semantic and Social Media Adaptation and Personalization, pp. 53–58. IEEE CS, Washington, DC (2013)Google Scholar
  7. 7.
    Návrat, P.: Cognitive Traveling in Digital Space: From Keyword Search through Exploratory Information Seeking. Central European J. of Comp. Science 2, 170–182 (2012)CrossRefGoogle Scholar
  8. 8.
    Perugini, S.: Supporting Multiple Paths to Objects in Information Hierarchies: Faceted Classification, Faceted Search, and Symbolic Links. Information Processing & Management 46(1), 22–43 (2010)CrossRefGoogle Scholar
  9. 9.
    Rástočný, K., Tvarožek, M., Bieliková, M.: Web Search Results Exploration via Cluster-Based Views and Zoom-Based Navigation. J. of Universal Computer Science 19(15), 2320–2346 (2013)Google Scholar
  10. 10.
    Sahoo, N., Callan, J., Krishnan, R., Duncan, G., Padman, R.: Incremental Hierarchical Clustering of Text Documents. In: CIKM 2006: Proc. of the 15th ACM Int. Conf. on Information and Knowledge Management, pp. 357–366. ACM Press, New York (2006)Google Scholar
  11. 11.
    Skoutas, D., Alrifai, M.: Tag Clouds Revisited. In: CIKM 2011: Proc. of the 20th ACM Int. Conf. on Information and Knowledge Management, pp. 221–230. ACM Press, New York (2011)Google Scholar
  12. 12.
    Ševcech, J., Móro, R., Holub, M., Bieliková, M.: User Annotations as a Context for Related Document Search on the Web and Digital Libraries. Informatica 38(1), 21–30 (2014)Google Scholar
  13. 13.
    Šimko, J., Tvarožek, M., Bieliková, M.: Semantic History Map: Graphs Aiding Web Revisitation Support. In: DEXA 2010: Workshop on Database and Expert Systems Applications, pp. 206–210. IEEE Press (2010)Google Scholar
  14. 14.
    Teevan, J., Jones, W., Capra, R.: Personal Information Management (PIM) 2008. ACM SIGIR Forum 42(2), 96–103 (2008)CrossRefGoogle Scholar
  15. 15.
    Tvarožek, M., Bieliková, M.: Personalized Faceted Navigation in the Semantic Web. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 511–515. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Tvarožek, M.: Exploratory Search in the Adaptive Social Semantic Web. Information Sciences and Technologies Bulletin of the ACM Slovakia 3(1), 42–51 (2011)Google Scholar
  17. 17.
    Weiland, M., Dachselt, R.: Facet Folders: Flexible Filter Hierarchies with Faceted Metadata. In: CHI 2008: Proc. of the 26th Annual Conf. on Human Factors in Computing Systems, pp. 3735–3740. ACM Press, New York (2008)Google Scholar
  18. 18.
    Wei, B., Liu, J., Zheng, Q., Zhang, W., Fu, X., Feng, B.: A survey of Faceted Search. Journal of Web Engineering 12(1&2), 41–64 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Róbert Móro
    • 1
  • Mária Bieliková
    • 1
  • Roman Burger
    • 1
  1. 1.Faculty of Informatics and Information TechnologiesSlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations