Rapid Development of Interactive Applications Based on Online Social Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8787)


Online social networks, like Twitter or Google+, are widely used for all kind of purposes, and the proliferation of smartphones enables their use anywhere, anytime. The instant messaging capabilities of these services are used in an ad-hoc way for social activities, like organizing meetings or gathering preferences among a group of friends, or as a means to contact community managers of companies or services.

Provided with automation mechanisms, posts (messages in social networks) can be used as a dialogue mechanism between users and computer applications. In this paper we propose the concept of post-based application, an application that uses short messages as a medium to obtain input commands from users and produce outputs, describing several scenarios where these applications are of interest. In addition, we provide an automated, Model-Driven Engineering approach (currently targeting Twitter) for their rapid construction, including dedicated Domain-Specific Languages to express the interesting parts to be detected in posts; and query matched posts, aggregate information or synthesize posts.


Social Networks Post-based Application Model-Driven Engineering Domain-Specific Languages Social Applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming environment for structured social computing. In: UIST, pp. 53–64. ACM (2011)Google Scholar
  2. 2.
    Asadi, N., Lin, J.: Fast candidate generation for real-time tweet search with bloom filter chains. ACM Trans. Inf. Syst. 31(3), 13 (2013)CrossRefGoogle Scholar
  3. 3.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: PODS, pp. 1–16. ACM (2002)Google Scholar
  4. 4.
    Bozzon, A., Brambilla, M., Ceri, S., Mauri, A.: Reactive crowdsourcing. In: Proc. 22nd Int. Conf. on World Wide Web, pp. 153–164 (2013)Google Scholar
  5. 5.
  6. 6.
    Brambilla, M., Mauri, A.: Model-driven development of social network enabled applications with webml and social primitives. In: Grossniklaus, M., Wimmer, M. (eds.) ICWE Workshops 2012. LNCS, vol. 7703, pp. 41–55. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Döhling, L., Leser, U.: EquatorNLP: Pattern-based information extraction for disaster response. In: Foundations, Technologies and Applications of the Geospatial Web, pp. 127–138 (2011)Google Scholar
  8. 8.
    Hepp, M.: Hypertwitter: Collaborative knowledge engineering via twitter messages. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 451–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Hyman, P.: ‘Peace technologies’ enable eyewitness reporting when disasters strike. Commun. ACM 57(1), 27–29 (2014)CrossRefGoogle Scholar
  10. 10.
    Kokciyan, N., Üsküdarli, S.M., Dinesh, T.B.: User generated human computation applications. In: SocialCom/PASSAT, pp. 593–598. IEEE (2012)Google Scholar
  11. 11.
    Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window queries over data streams. ACM Trans. Database Syst. 34(1) (2009)Google Scholar
  12. 12.
    Kumar, S., Morstatter, F., Liu, H.: Twitter Data Analytics. Springer Briefs in Computer Science. Springer (2014)Google Scholar
  13. 13.
    Jara, J., Daniel, F., Casati, F., Marchese, M.: From a simple flow to social applications. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS, vol. 8295, pp. 39–50. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Li, C., Sun, A., Weng, J., He, Q.: Exploiting hybrid contexts for tweet segmentation. In: SIGIR, pp. 523–532. ACM (2013)Google Scholar
  15. 15.
    Li, J., Vishwanath, A., Rao, H.R.: Retweeting the Fukushima nuclear radiation disaster. Commun. ACM 57(1), 78–85 (2014)CrossRefGoogle Scholar
  16. 16.
    Miller, G.A.: Wordnet: A lexical database for english. CACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  17. 17.
    Porta, J., Sancho, J.-L.: Word normalization in twitter using finite-state transducers. In: Tweet-Norm@SEPLN, CEUR, vol. 1086, pp. 49–53 (2013)Google Scholar
  18. 18.
    Qualman, E.: Socialnomics: How Social Media Transforms the Way We Live and Do Business, 2nd edn. Wiley, Chichester (2012)Google Scholar
  19. 19.
  20. 20.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 25(4), 919–931 (2013)CrossRefGoogle Scholar
  21. 21.
    Segura, Á.M., de Lara, J., Cuadrado, J.S.: twiagle: A tool for engineering applications based on instant messaging over twitter. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 536–539. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Treiber, M., Schall, D., Dustdar, S., Scherling, C.: Tweetflows: Flexible workflows with twitter. In: PESOS 2011, pp. 1–7. ACM (2011)Google Scholar
  23. 23.
    Verma, S., Vieweg, S., Corvey, W., Palen, L., Martin, J., Palmer, M., Schram, A., Anderson, K.: Natural language processing to the rescue? extracting “situational awareness” tweets during mass emergency. In: ICWSM. AAAI Press (2011)Google Scholar
  24. 24.
    Zhao, F., Tung, A.K.H.: Large scale cohesive subgraphs discovery for social network visual analysis. PVLDB 6(2), 85–96 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Modelling and Software Engineering Group, Department of Computer ScienceUniversidad Autónoma de MadridSpain

Personalised recommendations