Rapid Development of Interactive Applications Based on Online Social Networks

  • Ángel Mora Segura
  • Juan de Lara
  • Jesús Sánchez Cuadrado
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8787)


Online social networks, like Twitter or Google+, are widely used for all kind of purposes, and the proliferation of smartphones enables their use anywhere, anytime. The instant messaging capabilities of these services are used in an ad-hoc way for social activities, like organizing meetings or gathering preferences among a group of friends, or as a means to contact community managers of companies or services.

Provided with automation mechanisms, posts (messages in social networks) can be used as a dialogue mechanism between users and computer applications. In this paper we propose the concept of post-based application, an application that uses short messages as a medium to obtain input commands from users and produce outputs, describing several scenarios where these applications are of interest. In addition, we provide an automated, Model-Driven Engineering approach (currently targeting Twitter) for their rapid construction, including dedicated Domain-Specific Languages to express the interesting parts to be detected in posts; and query matched posts, aggregate information or synthesize posts.


Social Networks Post-based Application Model-Driven Engineering Domain-Specific Languages Social Applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming environment for structured social computing. In: UIST, pp. 53–64. ACM (2011)Google Scholar
  2. 2.
    Asadi, N., Lin, J.: Fast candidate generation for real-time tweet search with bloom filter chains. ACM Trans. Inf. Syst. 31(3), 13 (2013)CrossRefGoogle Scholar
  3. 3.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: PODS, pp. 1–16. ACM (2002)Google Scholar
  4. 4.
    Bozzon, A., Brambilla, M., Ceri, S., Mauri, A.: Reactive crowdsourcing. In: Proc. 22nd Int. Conf. on World Wide Web, pp. 153–164 (2013)Google Scholar
  5. 5.
  6. 6.
    Brambilla, M., Mauri, A.: Model-driven development of social network enabled applications with webml and social primitives. In: Grossniklaus, M., Wimmer, M. (eds.) ICWE Workshops 2012. LNCS, vol. 7703, pp. 41–55. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Döhling, L., Leser, U.: EquatorNLP: Pattern-based information extraction for disaster response. In: Foundations, Technologies and Applications of the Geospatial Web, pp. 127–138 (2011)Google Scholar
  8. 8.
    Hepp, M.: Hypertwitter: Collaborative knowledge engineering via twitter messages. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 451–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Hyman, P.: ‘Peace technologies’ enable eyewitness reporting when disasters strike. Commun. ACM 57(1), 27–29 (2014)CrossRefGoogle Scholar
  10. 10.
    Kokciyan, N., Üsküdarli, S.M., Dinesh, T.B.: User generated human computation applications. In: SocialCom/PASSAT, pp. 593–598. IEEE (2012)Google Scholar
  11. 11.
    Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window queries over data streams. ACM Trans. Database Syst. 34(1) (2009)Google Scholar
  12. 12.
    Kumar, S., Morstatter, F., Liu, H.: Twitter Data Analytics. Springer Briefs in Computer Science. Springer (2014)Google Scholar
  13. 13.
    Jara, J., Daniel, F., Casati, F., Marchese, M.: From a simple flow to social applications. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS, vol. 8295, pp. 39–50. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Li, C., Sun, A., Weng, J., He, Q.: Exploiting hybrid contexts for tweet segmentation. In: SIGIR, pp. 523–532. ACM (2013)Google Scholar
  15. 15.
    Li, J., Vishwanath, A., Rao, H.R.: Retweeting the Fukushima nuclear radiation disaster. Commun. ACM 57(1), 78–85 (2014)CrossRefGoogle Scholar
  16. 16.
    Miller, G.A.: Wordnet: A lexical database for english. CACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  17. 17.
    Porta, J., Sancho, J.-L.: Word normalization in twitter using finite-state transducers. In: Tweet-Norm@SEPLN, CEUR, vol. 1086, pp. 49–53 (2013)Google Scholar
  18. 18.
    Qualman, E.: Socialnomics: How Social Media Transforms the Way We Live and Do Business, 2nd edn. Wiley, Chichester (2012)Google Scholar
  19. 19.
  20. 20.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 25(4), 919–931 (2013)CrossRefGoogle Scholar
  21. 21.
    Segura, Á.M., de Lara, J., Cuadrado, J.S.: twiagle: A tool for engineering applications based on instant messaging over twitter. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 536–539. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Treiber, M., Schall, D., Dustdar, S., Scherling, C.: Tweetflows: Flexible workflows with twitter. In: PESOS 2011, pp. 1–7. ACM (2011)Google Scholar
  23. 23.
    Verma, S., Vieweg, S., Corvey, W., Palen, L., Martin, J., Palmer, M., Schram, A., Anderson, K.: Natural language processing to the rescue? extracting “situational awareness” tweets during mass emergency. In: ICWSM. AAAI Press (2011)Google Scholar
  24. 24.
    Zhao, F., Tung, A.K.H.: Large scale cohesive subgraphs discovery for social network visual analysis. PVLDB 6(2), 85–96 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ángel Mora Segura
    • 1
  • Juan de Lara
    • 1
  • Jesús Sánchez Cuadrado
    • 1
  1. 1.Modelling and Software Engineering Group, Department of Computer ScienceUniversidad Autónoma de MadridSpain

Personalised recommendations