Advertisement

Efficient Representation of Timed UML 2 Interactions

  • Alexander Knapp
  • Harald Störrle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8769)

Abstract

UML 2 interactions describe system behavior over time in a declarative way. The standard approach to defining their formal semantics enumerates traces of events; other representation formats, like Büchi automata or prime event structures, have been suggested, too. We describe another, more succinct format, interaction structures, which is based on asymmetric event structures. It simplifies the integration of real time, and complex operators like alt and break, and leads to an efficient semantic representation of interactions. We provide the formalism, and a prototypical implementation highlighting the benefits of our approach.

Keywords

Partial Order Timing Constraint Model Check Interaction Structure Sequence Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, Asymmetric Event Structures, and Processes. Inf. Comput. 171(1), 1–49 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Dobing, B., Parsons, J.: How UML Is Used. Comm. ACM 49(5), 109–113 (2006)CrossRefGoogle Scholar
  3. 3.
    Dobing, B., Parsons, J.: Dimensions of UML Diagram Use: Practitioner Survey and Research Agenda. In: Siau, K., Erickson, J. (eds.) Principle Advancements in Database Management Technologies: New Applications and Frameworks, pp. 271–290. IGI Publishing (2010)Google Scholar
  4. 4.
    Grosu, R., Smolka, S.A.: Safety-Liveness Semantics for UML 2.0 Sequence Diagrams. In: Proc. 5th Conf. Appl. of Concurrency to System Design (ACSD 2005), pp. 6–14. IEEE Computer Society (2005)Google Scholar
  5. 5.
    Hammal, Y.: Branching Time Semantics for UML 2.0 Sequence Diagrams. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 259–274. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Sequence Diagrams. J. Softw. Syst. Model. 7(2), 237–252 (2008)CrossRefGoogle Scholar
  7. 7.
    Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Küster-Filipe, J.: Modelling Concurrent Interactions. Theo. Comp. Sci. 351(2), 203–220 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Micskei, Z., Waeselynck, H.: The Many Meanings of UML 2 Sequence Diagrams: A Survey. J. Softw. Syst. Model. 10(4), 489–514 (2011)CrossRefGoogle Scholar
  10. 10.
    Nayak, A., Samanta, D.: Automatic Test Data Synthesis using UML Sequence Diagrams. J. Obj. Techn. 9(2), 75–104 (2010), http://www.jot.fm/issues/issue201003/article2/ CrossRefGoogle Scholar
  11. 11.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains, Part I. Theo. Comp. Sci. 13, 85–108 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Object Management Group: OMG Unified Modeling Language (OMG UML), Superstructure. Version 2.4.1. OMG Document Number: formal/2011-08-06. Tech. rep., Object Management Group (August 2011), http://www.omg.org/spec/UML/2.4.1/
  13. 13.
    Störrle, H.: Assert, Negate and Refinement in UML-2 Interactions. In: Jürjens, J., Rumpe, B., France, R., Fernandey, E.B. (eds.) Proc. Ws. Critical Systems Development with UML. Technical report TUM-I0317. pp. 79–94 (2003)Google Scholar
  14. 14.
    Störrle, H.: Semantics of Interactions in UML 2.0. In: Hosking, J., Cox, P. (eds.) Proc. IEEE Symp. Human Centric Computing Lang. and Env., pp. 129–136. IEEE Computer Society (2003)Google Scholar
  15. 15.
    Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of Logic Programming 12(1-2), 67–96 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander Knapp
    • 1
  • Harald Störrle
    • 2
  1. 1.Universität AugsburgGermany
  2. 2.Danmarks Tekniske UniversitetDenmark

Personalised recommendations