Advertisement

Knowledge Granulation in Interval-Valued Information Systems Based on Maximal Consistent Blocks

  • Nan ZhangEmail author
  • Xiaodong Yue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8818)

Abstract

Rough set theory, proposed by Pawlak in the early 1980s, is an extension of the classical set theory for modeling uncertainty or imprecision information. In this paper, we investigate partial relations and propose the concept of knowledge granulation based on the maximal consistent block in interval-valued information systems. The knowledge granulation can provide important approaches to measuring the discernibility of different knowledge in interval-valued information systems. These results in this paper may be helpful for understanding the essence of rough approximation and attribute reduction in interval-valued information systems.

Keywords

rough set theory knowledge granulation uncertainty measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Boston (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    Yao, Y.Y.: On Generalizing Pawlak Approximation Operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 298–307. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Yao, Y.Y., Miao, D.Q., Xu, F.F.: Granular Structures and Approximations in Rough Sets and Knowledge Spaces. In: Ajith, A., Rafael, F., Rafael, B. (eds.) Rough Set Theory: A True Landmark in Data Analysis. Springer, Berlin (2009)Google Scholar
  5. 5.
    Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Systems 20, 287–297 (2003)CrossRefGoogle Scholar
  6. 6.
    Qian, Y.H., Liang, J.Y., Yao, Y.Y., et al.: MGRS: A multi-granulation rough set. Information Sciences 6, 949–970 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wang, G.Y., Zhang, Q.H., Ma, X.A., Yang, Q.S.: Granular computing models for knowledge uncertainty. Chinese Journal of Software 4, 676–694 (2011)CrossRefGoogle Scholar
  8. 8.
    Qian, Y.H., Liang, J.Y., Dang, C.Y.: Incomplete multi-granulation rough set. IEEE Transactions on Systems, Man, and Cybernetics: Part A 2, 420–431 (2012)Google Scholar
  9. 9.
    Miao, D.Q., Zhao, Y., Yao, Y.Y., et al.: Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model. Information Sciences 24, 4140–4150 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Shannon, C.E.: The mathematical theory of communication. The Bell System Technical Journal 3-4, 373–423 (1948)MathSciNetGoogle Scholar
  11. 11.
    Beaubouef, T., Petry, F.E., Arora, G.: Information-theoretic measures of uncertainty for rough sets and rough relational databases. Information Sciences 109, 185–195 (1998)CrossRefGoogle Scholar
  12. 12.
    Miao, D.Q., Fan, S.D.: The calculation of knowledge granulation and its application. Journal of Systems Engineering: Theory and Practice 24, 93–96 (2002)Google Scholar
  13. 13.
    Liang, J.Y., Shi, Z.Z.: The information entropy, rough entropy and knowledge granularity in rough set theory. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 1, 37–46 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liang, J.Y., Shi, Z.Z., Li, D., Wierman, M.: Information entropy, rough entropy and knowledge granularity in incomplete information systems. International Journal of General Systems 35, 641–654 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Qian, Y., Liang, J.: Combination entropy and combination granulation in incomplete information system. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 184–190. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Xu, W.H., Zhang, X.Y., Zhang, W.X.: Knowledge granulation, knowledge entropy and knowledge uncertainty measure in ordered information systems. Applied Soft Computing 9, 1244–1251 (2009)CrossRefGoogle Scholar
  17. 17.
    Yao, Y.Y., Zhao, L.Q.: A measurement theory view on the granularity of partitions. Information Sciences 213, 1–13 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhang, N., Miao, D.Q., Yue, X.D.: Knowledge reduction in interval-valued information systems. Journal of Computer Research and Development 47, 1362–1371 (2010)Google Scholar
  19. 19.
    Zhang, N.: Research on Interval-valued Information Systems and Knowledge Spaces: A Granular Approach. PhD Thesis, Tongji University, China (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Computer and Control EngineeringYantai UniversityYantaiChina
  2. 2.School of Computer Engineering and ScienceShanghai UniversityShanghaiChina

Personalised recommendations