Advertisement

An Improved Decimation of Triangle Meshes Based on Curvature

  • Wei Li
  • Yufei Chen
  • Zhicheng Wang
  • Weidong Zhao
  • Lin Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8818)

Abstract

This paper proposes an improved decimation of triangle meshes based on curvature. Mesh simplification based on vertex decimation is simple and easy for implementation. But in previous mesh simplification researches based on vertex decimation, algorithms generally focused on the distance error between the simplified mesh and the original mesh. However, a high quality simplified mesh must have low approximation error and preserve geometric features of the original model. According to this consideration, the proposed algorithm improves classical vertex decimation by calculating the mean curvature of each vertex and considering the change of curvature in local ring. Meanwhile, this algorithm wraps the local triangulation by a global triangulation. Experimental results demonstrate that our approach can preserve the major topology characteristics and geometric features of the initial models after simplifying most vertices, without complicated calculation. It also can reduce the influence from noises and staircase effects in the process of reconstruction, and result in a smooth surface.

Keywords

Mesh simplification vertex decimation geometric feature curvature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ovreiu, E., Riveros, J.G., Valette, S., Prost, R.: Mesh Simplification Using a Two-Sided Error Minimization. International Proceedings of Computer Science & Information Technology 50 (2012)Google Scholar
  2. 2.
    He, H., Tian, J., Zhang, X.: Review of mesh simplification. Journal of Software 12 (2002)Google Scholar
  3. 3.
    Fu, X.: Algorithm research of 3D mesh simplification. Southwest University, Chongqing (2008)Google Scholar
  4. 4.
    Campomanes-Alvarez, B.R., Damas, S., Cordón, O.: Mesh simplification for 3D modeling using evolutionary multi-objective optimization. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  5. 5.
    Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. ACM Siggraph Computer Graphics 26(2), 65–70 (1992)CrossRefGoogle Scholar
  6. 6.
    Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108. ACM (1996)Google Scholar
  7. 7.
    Hamann, B.: A data reduction scheme for triangulated surfaces. Computer Aided Geometric Design 11(2), 197–214 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Jun, L., Shi, J.: A Mesh Simplification Method Based on Shape Feature. In: 2006 8th International Conference on Signal Processing, vol. 2 (2006)Google Scholar
  9. 9.
    Zhao, Y., Liu, Y., Song, R., Zhang, M.: A Retinex theory based points sampling method for mesh simplification. In: 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 230–235. IEEE (2011)Google Scholar
  10. 10.
    Rossignac, J., Borrel, P.: Multi-resolution 3D approximations for rendering complex scenes. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Xin, S.Q., Chen, S.M., He, Y., et al.: Isotropic Mesh Simplification by Evolving the Geodesic Delaunay Triangulation. In: 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pp. 39–47. IEEE (2011)Google Scholar
  12. 12.
    Wang, J., Wang, L.R., Li, J.Z., Hagiwara, I.: A feature preserved mesh simplification algorithm. Journal of Engineering and Computer Innovations 6, 98–105 (2011)Google Scholar
  13. 13.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216. ACM Press/Addison-Wesley Publishing Co. (1997)Google Scholar
  14. 14.
    Wei, J., Lou, Y.: Feature preserving mesh simplification using feature sensitive metric. Journal of Computer Science and Technology 25(3), 595–605 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gieng, T.S., Hamann, B., Joy, K.I., Schussman, G.L., Trotts, I.J.: Smooth hierarchical surface triangulations. In: Proceedings of the 8th Conference on Visualization 1997, pp. 379–386. IEEE Computer Society Press (1997)Google Scholar
  16. 16.
    Wang, Y., Zheng, J.: Curvature-guided adaptive T-spline surface fitting. Computer-Aided Design 45(8), 1095–1107 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  18. 18.
    Chen, Y., Wang, Z., Hu, J., Zhao, W., Wu, Q.: The domain knowledge based graph-cut model for liver ct segmentation. Biomedical Signal Processing and Control 7(6), 591–598 (2012)CrossRefGoogle Scholar
  19. 19.
    Chen, Y., Zhao, W., Wu, Q., Wang, Z., Hu, J.: Liver segmentation in CT images for intervention using a graph-cut based model. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 157–164. Springer, Heidelberg (2012)Google Scholar
  20. 20.
    Qing, D., Chen, J., Yu, H., Wang, Z.: Mesh simplification method based on vision feature. In: IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2011), pp. 398–402. IET (2011)Google Scholar
  21. 21.
    Jian, W., Hai-Ling, W., Bo, Z., Ni, J.: An Efficient Mesh Simplification Method in 3D Graphic Model Rendering. In: 2013 Seventh International Conference on Internet Computing for Engineering and Science (ICICSE), pp. 55–59. IEEE (2013)Google Scholar
  22. 22.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 317–324. ACM Press/Addison-Wesley Publishing Co. (1999)Google Scholar
  23. 23.
    Sullivan, J.M., Schröder, P.: Discrete differential geometry. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  24. 24.
    Pan, Z., Zhou, K., Shi, J.: A new mesh simplification algorithm based on triangle collapses. Journal of Computer Science and Technology 16(1), 57–63 (2001)zbMATHCrossRefGoogle Scholar
  25. 25.
    Thomas, D.M., Yalavarthy, P.K., Karkala, D., Natarajan, V.: Mesh simplification based on edge collapsing could improve computational efficiency in near infrared optical tomographic imaging. IEEE Journal of Selected Topics in Quantum Electronics 18(4), 1493–1501 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wei Li
    • 1
    • 2
  • Yufei Chen
    • 1
    • 2
  • Zhicheng Wang
    • 1
    • 2
  • Weidong Zhao
    • 1
    • 2
  • Lin Chen
    • 1
    • 2
  1. 1.Research Center of CADTongji UniversityShanghaiChina
  2. 2.The Engineering Research Center for Enterprise Digital Technology, Ministry of EducationTongji UniversityShanghaiChina

Personalised recommendations