Advertisement

Extending MSVL with Function Calls

  • Nan Zhang
  • Zhenhua Duan
  • Cong Tian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8829)

Abstract

Modeling, Simulation and Verification Language (MSVL) is a useful formalism for specification and verification of concurrent systems. To make it more practical and easier to use, we extend MSVL with function calls in this paper. To do so, an approach for function calls similar as in imperative programming languages is presented. Further, the semantics of expressions is redefined and the semantics of new added function call statements is formalized. Moreover, an example is given to illustrate how to use function calls in practice with MSVL.

Keywords

Temporal Logic Programming Projection Function Call Modeling Simulation Verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duan, Z.: Temporal logic and temporal logic programming. Science Press, Beijing (2005)Google Scholar
  2. 2.
    Han, M., Duan, Z., Wang, X.: Time constraints with temporal logic programming. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 266–282. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Liu, C., Layland, J.: Scheduling algorithm for multiprogramming in a hard real-time environment. Journal of the ACM 20(1), 46–61 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent system. Springer, New York (1992)CrossRefGoogle Scholar
  5. 5.
    Mo, D., Wang, X., Duan, Z.: Asynchronous communication in MSVL. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 82–97. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on the Foundations of Computer Science, pp. 46–57. IEEE Computer Society, Providence (1977)Google Scholar
  7. 7.
    Queille, J., Sifakis, J.: Specification and verification of concurrent systems in cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Proceedings of the 5th Colloquium on International Symposium in Programming. LNCS, vol. 137, pp. 337–351. Springer, Springer (1982)CrossRefGoogle Scholar
  8. 8.
    Wang, X., Duan, Z., Zhao, L.: Formalizing and implementing types in msvl, pp. 62–75 (2013)Google Scholar
  9. 9.
    Zhan, N.: An intuitive formal proof for deadline driven scheduler. Journal of Computer Science and Technology 16(2), 146–158 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhang, N., Duan, Z., Tian, C.: A cylinder computation model for many-core parallel computing. Theoretical Computer Science 497, 68–83 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhang, N., Duan, Z., Tian, C., Du, D.: A formal proof of the deadline driven scheduler in pptl axiomatic system. Theoretical Computer Science (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nan Zhang
    • 1
  • Zhenhua Duan
    • 1
  • Cong Tian
    • 1
  1. 1.Institute of Computing Theory and Technology,and ISN LaboratoryXidian UniversityXi’anChina

Personalised recommendations