Ontology for Resource Self-organisation in Cyber-Physical-Social Systems

  • Nikolay Teslya
  • Alexander Smirnov
  • Tatiana Levashova
  • Nikolay Shilov
Part of the Communications in Computer and Information Science book series (CCIS, volume 468)

Abstract

Cyber-Physical-Social Systems (CPSSs) are expected to be context-aware. Sharable contexts lie at the heart of the context-aware systems. Ontologies provide means to create sharable ontology-based context models. Such ontologies are referred to as context ontologies. Context is an ontology-based model specified for actual settings. The present research inherits the idea of context ontologies usage for modelling context in CPSSs. In this work, an upper level context ontology for CPSSs is proposed. This ontology is applied in the domain of self-organising resource network. A case study from the area of proactive recommendation systems demonstrates the proposed approach.

Keywords

Cyber-physical-social systems upper context ontology resource self-organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sheth, A.P., Anantharam, P., Henson, C.A.: Physical-Cyber-Social Computing: An Early 21st Century Approach. IEEE Intell. Syst. 28(1), 78–82 (2013)CrossRefGoogle Scholar
  2. 2.
    Hong, J., Suh, E., Kim, S.: Context-Aware Systems: A Literature Review and Classification. Expert Syst. Appl. 36, 8509–8522 (2009)CrossRefGoogle Scholar
  3. 3.
    Cagalaban, G., Kim, S.: Context-Aware Service Framework for Decision-Support Applications Using Ontology-Based Modeling. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS, vol. 6232, pp. 103–110. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Kokar, M.M., Matheus, C.J., Baclawski, K.: Ontology-Based Situation Awareness. Inform. Fusion 10, 83–98 (2009)CrossRefGoogle Scholar
  5. 5.
    Jakobson, G., Buford, J., Lewis, L.: Towards an Architecture for Reasoning About Complex Event-Based Dynamic Situations. In: Proceedings of the International Workshop on Distributed Event-based Systems (DEBS 2004), Edinburgh, UK (2004)Google Scholar
  6. 6.
    Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: Standard Ontology for Ubiquitous and Pervasive Application. In: Proceedings of International Conference on Mobile and Ubiquitous Systems: Networking and Services, Boston, August 22-25, pp. 258–267 (2004)Google Scholar
  7. 7.
    Wang, X.H., Gu, T., Zhang, D.Q., Pung H.K.: Ontology Based Context Modeling and Reasoning Using OWL. In: Proceedings of the 2nd IEEE Conference on Pervasive Computing and Communications, Workshop on Context Modeling and Reasoning. IEEE CS Press, pp. 18–22 (2004) Google Scholar
  8. 8.
    Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: gumo – the general user model ontology. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 428–432. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Massacci, F., Mylopoulos, J., Zannone, N.: An Ontology for Secure Socio-Technical Systems. In: Rittgen, P. (ed.) Handbook of Ontologies for Business Interaction, pp. 188–206. Information Science Reference, Hershey (2008)Google Scholar
  10. 10.
    Porello, D., Setti, F., Ferrario, R., Cristani, M.: Multiagent Socio-Technical Systems. An Ontological Approach. In: Balke, T., Dignum, F., van Riemsdijk, M.B., Chopra, A.K. (eds.) COIN 2013. LNCS (LNAI), vol. 8386, pp. 42–62. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    van Dam, K.H., Nikolic, I., Lukszo, Z. (eds.): Agent-Based Modelling of Socio-Technical Systems. Agent-Based Social Systems, vol. 9. Springer, Netherlands (2013)Google Scholar
  12. 12.
    Zimmermann, A., Lorenz, A., Oppermann, R.: An Operational Definition of Context. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Liu, Z., Yang, D.-S., Wen, D., Zhang, W.-M., Mao, W.: Cyber-Physical-Social Systems for Command and Control. IEEE Intell. Syst., 92–96 (July/August 2011)Google Scholar
  14. 14.
    Hofkirchner, W.: Emergence and the Logic of Explanation. In: An Argument for the Unity of Science. Acta Polytechnica Scandinavica. Mathematics, Computing and Management in Engineering Series, vol. 91, pp. 23–30 (1998)Google Scholar
  15. 15.
    Fuchs, C.: Globalization and Self-Organization in the Knowledge-Based Society. TripleC www.triplec.uti.at 1(2), 105–169 (2003)
  16. 16.
    Hackman, J.R.: The Design of Work Teams. In: Lorch, J.W. (ed.) Handbook of Organizational Behavior. Prentice Hall, Upper Saddle River (1987)Google Scholar
  17. 17.
    Ambient Networks Phase 2. Integrated Design for Context, Network and Policy Management, Deliverable D10.-D1 (2006), http://www.ambient-networks.org/Files/deliverables/D10-D.1_PU.pdf (retrieved from May 16, 2014)
  18. 18.
    Smirnov, A., Sandkuhl, K., Shilov, N.: Multilevel Self-Organisation of Cyber-Physical Networks: Synergic Approach. Int. J. Integrated Supply Management 8(1/2/3), 90–106 (2013)CrossRefGoogle Scholar
  19. 19.
    Jantsch, E.: Design for Evolution. George Braziller, New York (1975)Google Scholar
  20. 20.
    Meulpolder, M., Pouwelse, J.A., Epema, D.H.J., Sips, H.J.: BarterCast: A practical approach to prevent lazy freeriding in P2P networks. In: IEEE International Symposium on Parallel & Distributed Processing (2009), doi:10.1109/IPDPS.2009.5160954Google Scholar
  21. 21.
    Smirnov, A., Shilov, N., Makklya, A., Gusikhin, O.: Context-Based Service Fusion for Personalized On-Board Information Support. In: 18th International Forum on Advanced Microsystems for Automotive Applications (AMAA 2014) “Smart Systems for Safe, Clean, and Automated Vehicles”, Berlin, Germany, June 23-24 (accepted for publication in 2014)Google Scholar
  22. 22.
    Klampfl, E., Gusikhin, O., Theisen, K., Liu, Y., Giuli, T.J.: Intelligent Refueling Advisory System. In: Proceedings of 2nd Workshop on Intelligent Vehicle Control Systems, Madeira, Portugal, pp. 60–72 (2008)Google Scholar
  23. 23.
    Burke, R., Ramezani, M.: Matching Recommendation Technologies and Domains. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook. Springer (2011)Google Scholar
  24. 24.
    SYNC AppLink Overview, http://support.ford.com/sync-technology/applink-overview-sync (accessed May 16, 2014)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nikolay Teslya
    • 1
    • 2
  • Alexander Smirnov
    • 1
    • 2
  • Tatiana Levashova
    • 1
  • Nikolay Shilov
    • 1
  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of SciencesSt. PetersburgRussian Federation
  2. 2.ITMO UniversitySt. PetersburgRussian Federation

Personalised recommendations