Advertisement

Preliminary Studies on Biclustering of GWA: A Multiobjective Approach

  • Khedidja Seridi
  • Laetitia JourdanEmail author
  • El-Ghazali Talbi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8752)

Abstract

Genome-wide association (GWA) studies aim to identify genetic variations (polymorphisms) associated with diseases, and more generally, with traits. Commonly, a Single Nucleotide Polymorphism (SNP) is considered as it is the most common form of genetic variations. In the literature, several statistical and data mining methods have been applied to GWA data analysis. In this article, we present a preliminary study where we examine the possibilities of applying biclustering approaches to detect association between SNP markers and phenotype traits. Therefore, we propose a multiobjective model for biclustering problems in GWA context. Furthermore, we propose an adapted heuristic and metaheuristic to solve it. The performance of our algorithms are assessed using synthetic data sets.

Keywords

Quantitative Trait Locus Quantitative Trait Locus Analysis Single Nucleotide Polymorphism Marker Data Mining Method Multiobjective Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Binder, H., Tina, M., Holger, S., Klaus, G., Michael, S., Jan, H., Katja, I., Martin, S.: Cluster-localized sparse logistic regression for SNP data. Stat. Appl. Genet. Mol. Biol. 11(4), 13 (2012)MathSciNetGoogle Scholar
  2. 2.
    Bush, W.S., Moore, J.H.: Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 8(2), e1002822 (2012)Google Scholar
  3. 3.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th ISMB, pp. 93–103. AAAI Press, Menlo Park (2000)Google Scholar
  4. 4.
    Ding, L., Baye, T.M., He, H., Zhang, X., Kurowski, B.G., Martin, L.J.: Detection of associations with rare and common SNPs for quantitative traits: a nonparametric Bayes-based approach. BMC Proc. 5(Suppl 9), S10 (2011)Google Scholar
  5. 5.
    Douglas, F., Trudy, M.: Introduction to Quantitative Genetics, 4th edn. Prentice Hall, Englewood Cliffs (1996)Google Scholar
  6. 6.
    Seridi, K., Jourdan, L., Talbi, E.-G.: Multi-objective evolutionary algorithm for biclustering in microarrays data. In: IEEE Congress on Evolutionary Computation, pp. 2593–2599. IEEE (2011)Google Scholar
  7. 7.
    Lashkargir, M., Monadjemi, S.A., Dastjerdi, A.B.: A new biclustering method for gene expersion data based on adaptive multi objective particle swarm optimization. In: Proceedings of the 2009 Second International Conference on Computer and Electrical Engineering. ICCEE ’09, vol. 01, pp. 559–563. IEEE Computer Society, Washington, DC, USA (2009)Google Scholar
  8. 8.
    Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.-G.: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. J. Heuristics 18(2), 317–352 (2012)CrossRefGoogle Scholar
  9. 9.
    Lin, H., Desmond, R., Bridges, S.L., Soong, S.: Variable selection in logistic regression for detecting SNP-SNP interactions: the rheumatoid arthritis example. Eur. J. Hum. Genet. 16(6), 735 (2008)CrossRefGoogle Scholar
  10. 10.
    Liu, J., Chen, Y.: Dynamic biclustering of microarray data with MOPSO. In: 2010 IEEE International Conference on Granular Computing. GrC 2010, pp. 330–334. IEEE Computer Society, San Jose, CA, USA, 14–16 August 2010Google Scholar
  11. 11.
    Liu, J., Li, Z., Hu, X., Chen, Y.: Biclustering of microarray data with MOSPO based on crowding distance. BMC Bioinf. 10(Suppl 4), S9 (2009)Google Scholar
  12. 12.
    Liu, J., Li, Z., Hu, X., Chen, Y.: Multi-objective ant colony optimization biclustering of microarray data. In: Granular Computing, pp. 424–429 (2009)Google Scholar
  13. 13.
    Liu, J., Li, Z., Liu, F., Chen, Y.: Multi-objective particle swarm optimization biclustering of microarray data. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 363–366 (2008)Google Scholar
  14. 14.
    Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn. 39(12), 2464–2477 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Seridi, K., Jourdan, L., Talbi, E.-G.: Hybrid metaheuristic for multi-objective biclustering in microarray data. In: CIBCB, pp. 222–228. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Khedidja Seridi
    • 1
    • 2
  • Laetitia Jourdan
    • 1
    • 2
    Email author
  • El-Ghazali Talbi
    • 1
    • 2
  1. 1.INRIA Lille - Nord EuropeDOLPHIN Project-TeamVilleneuve d’Ascq CedexFrance
  2. 2.Université Lille 1, LIFL, UMR CNRS 8022Villeneuve d’Ascq CedexFrance

Personalised recommendations