Advertisement

Local Optima Networks of the Permutation Flow-Shop Problem

  • Fabio Daolio
  • Sébastien Verel
  • Gabriela Ochoa
  • Marco Tomassini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8752)

Abstract

This article extracts and analyzes local optima networks for the permutation flow-shop problem. Two widely used move operators for permutation representations, namely, swap and insertion, are incorporated into the network landscape model. The performance of a heuristic search algorithm on this problem is also analyzed. In particular, we study the correlation between local optima network features and the performance of an iterated local search heuristic. Our analysis reveals that network features can explain and predict problem difficulty. The evidence confirms the superiority of the insertion operator for this problem.

References

  1. 1.
    Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary algorithm. In: The 2005 IEEE Congress on Evolutionary Computation, 2005, vol. 2, pp. 1777–1784. IEEE (2005)Google Scholar
  2. 2.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Characterization and modeling of weighted networks. Phys. A Stat. Mech. Appl. 346(1), 34–43 (2005)CrossRefGoogle Scholar
  4. 4.
    Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Oper. Res. Lett. 16, 101–113 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: A framework for the reusable design of parallel and distributed metaheuristics. J. Heuristics 10, 357–380 (2004)CrossRefGoogle Scholar
  6. 6.
    Daolio, F., Tomassini, M., Verel, S., Ochoa, G.: Communities of minima in local optima networks of combinatorial spaces. Phys. A Stat. Mech. Appl. 390, 1684–1694 (2011)CrossRefGoogle Scholar
  7. 7.
    Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of the quadratic assignment problem. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)Google Scholar
  8. 8.
    Gilmour, S.G.: The interpretation of mallows’s \(\rm C_p\)-statistic. The Statistician 45, 49–56 (1996)CrossRefGoogle Scholar
  9. 9.
    Hoos, H., Stützle, T.: Stochastic local search: Foundations and applications. Morgan Kaufmann, San Francisco (2005)Google Scholar
  10. 10.
    Jones, T.: Evolutionary algorithms, fitness landscapes and search. Ph.D. Thesis, The University of New Mexico (1995)Google Scholar
  11. 11.
    Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, International Series in Operations Research and Management Science, vol. 57, pp. 321–353. Kluwer Academic Publishers, Norwell (2002)Google Scholar
  13. 13.
    Lumley, T., Miller, A.: Leaps: Regression subset selection (2009). http://CRAN.R-project.org/package=leaps
  14. 14.
    Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neutrality of flowshop scheduling fitness landscapes. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 238–252. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/. ISBN 3-900051-07-0
  18. 18.
    Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 165(2), 479–494 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Stadler, P.: Fitness landscapes. Biol. Evol. Stat. Phys. 585, 183–204 (2002)CrossRefGoogle Scholar
  21. 21.
    Stillinger, F.: A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995)CrossRefGoogle Scholar
  22. 22.
    Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 47(1), 65–74 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial spaces: The NK landscape case. Phys. Rev. E 78(6), 066114 (2008)CrossRefGoogle Scholar
  24. 24.
    Verel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local Optima Networks with Escape Edges. In: Procedings of International Conference on Artificial Evolution (EA-2011). pp. 10–23. Angers, France (Oct 2011).Google Scholar
  25. 25.
    Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)CrossRefGoogle Scholar
  26. 26.
    Watson, J., Barbulescu, L., Whitley, L., Howe, A.: Contrasting structured and random permutation flow-shop scheduling problems: search-space topology and algorithm performance. INFORMS J. Comput. 14(2), 98–123 (2002)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fabio Daolio
    • 1
  • Sébastien Verel
    • 2
  • Gabriela Ochoa
    • 3
  • Marco Tomassini
    • 1
  1. 1.Department of Information SystemsUniversity of LausanneLausanneSwitzerland
  2. 2.Université du Littoral Côte D’Opale, LISICDunkirkFrance
  3. 3.Computing Science and MathematicsUniversity of StirlingScotlandUK

Personalised recommendations