Balancing User Interaction and Control in BNSL

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8752)


In this paper we present a study based on an evolutionary framework to explore what would be a reasonable compromise between interaction and automated optimisation in finding possible solutions for a complex problem, namely the learning of Bayesian network structures, an NP-hard problem where user knowledge can be crucial to distinguish among solutions of equal fitness but very different physical meaning. Even though several classes of complex problems can be effectively tackled with Evolutionary Computation, most possess qualities that are difficult to directly encode in the fitness function or in the individual’s genotype description. Expert knowledge can sometimes be used to integrate the missing information, but new challenges arise when searching for the best way to access it: full human interaction can lead to the well-known problem of user-fatigue, while a completely automated evolutionary process can miss important contributions by the expert. For our study, we developed a GUI-based prototype application that lets an expert user guide the evolution of a network by alternating between fully-interactive and completely automatic steps. Preliminary user tests were able to show that despite still requiring some improvements with regards to its efficiency, the proposed approach indeed achieves its goal of delivering satisfying results for an expert user.


Interaction Memetic algorithms Evolutionary algorithms Local optimisation Bayesian Networks Model learning 


  1. 1.
    Rothlauf, F. (ed.): EvoWorkshops 2006, vol. 3907. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Barriere, O., Lutton, E., Wuillemin, P.H.: Bayesian network structure learning using cooperative coevolution. In: Genetic and Evolutionary Computation Conference, GECCO 2009 (2009)Google Scholar
  3. 3.
    Baudrit, C., Sicard, M., Wuillemin, P., Perrot, N.: Towards a global modelling of the camembert-type cheese ripening process by coupling heterogeneous knowledge with dynamic bayesian networks. J. Food Eng. 98(3), 283–293 (2010)CrossRefGoogle Scholar
  4. 4.
    Bellotti, F., Berta, R., De Gloria, A., Primavera, L.: Adaptive experience engine for serious games. IEEE Trans. Comput. Intell. AI Games 1(4), 264–280 (2009)CrossRefGoogle Scholar
  5. 5.
    Cheng, J., Bell, D.A., Liu, W.: An algorithm for bayesian belief network construction from data. In: Proceedings of AI & STAT’97, pp. 83–90 (1997)Google Scholar
  6. 6.
    Chiang, C.H., Shaughnessy, P., Livingston, G., Grinstein, G.G.: Visualizing graphical probabilistic models. Technical report 2005–017, UML CS (2005)Google Scholar
  7. 7.
    Chickering, D.M., Geiger, D., Heckerman, D.: Learning bayesian networks is NP-hard. Technical report MSR-TR-94-17, Microsoft Research, November 1994Google Scholar
  8. 8.
    Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The Open Graph Drawing Framework (OGDF). Handbook of Graph Drawing and Visualization, pp. 543–569 (2011)Google Scholar
  9. 9.
    Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347 (1992)MATHGoogle Scholar
  10. 10.
    Cossalter, M., Mengshoel, O.J., Selker, T.: Visualizing and understanding large-scale Bayesian networks. In: The AAAI-11 Workshop on Scalable Integration of Analytics and Visualization, pp. 12–21 (2011)Google Scholar
  11. 11.
    Delaplace, A., Brouard, T., Cardot, H.: Two evolutionary methods for learning bayesian network structures. In: Wang, Y., Cheung, Y., Liu, H. (eds.) CIS 2006. LNCS (LNAI), vol. 4456, pp. 288–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Druzdzel, M.J.: SMILE: Structural Modeling, inference, and Learning Engine and GeNIe: A Development Environment for Graphical Decision-Theoretic Models, pp. 902–903. American Association for Artificial Intelligence, Menlo Park (1999)Google Scholar
  13. 13.
    Druzdzel, M.J.: Smile: structural modeling, inference, and learning engine and genie: a development environment for graphical decision-theoretic models. In: Proceedings of AAAI’99, pp. 902–903 (1999)Google Scholar
  14. 14.
    Espinar, J., Cotta, C., Fernández-Leiva, A.J.: User-centric optimization with evolutionary and memetic systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 214–221. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Fan, X.F., et al.: A direct first principles study on the structure and electronic properties of \(be_{x}zn_{1 - x}o\). Appl. Phys. Lett. 91(12), 121121–121123 (2007)CrossRefGoogle Scholar
  16. 16.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  17. 17.
    Gürsoy, A., Atun, M.: Neighbourhood preserving load balancing: a self-organizing approach. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller, R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 234–241. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Hart, W.E., Krasnogor, N., Smith, J.E.: Memetic evolutionary algorithms. In: Hart, W.E., Smith, J.E., Krasnogor, N. (eds.) Recent Advances in Memetic Algorithms. Studies in Fuzziness and Soft Computing, vol. 166, pp. 3–27. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Hayashida, N., Takagi, H.: Visualized IEC: interactive evolutionary computation with multidimensional data visualization. In: IECON 2000. 26th Annual Conference of the IEEE, vol. 4, pp. 2738–2743 (2000)Google Scholar
  20. 20.
    Larranaga, P., et al.: Learning bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 26(4), 487–493 (1996)CrossRefGoogle Scholar
  21. 21.
    Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2, 1–14 (2012)CrossRefGoogle Scholar
  22. 22.
    Nguyen, Q.H., Ong, Y.S., Lim, M.H.: A probabilistic memetic framework. IEEE Trans. Evol. Comput. 13(3), 604–623 (2009)CrossRefGoogle Scholar
  23. 23.
    Norman, M., Moscato, P.: A competitive and cooperative approach to complex combinatorial search. In: Proceedings of the 20th Informatics and Operations Research Meeting, pp. 3–15 (1991)Google Scholar
  24. 24.
    Potter, A., McClure, M., Sellers, K.: Mass collaboration problem solving: a new approach to wicked problems. In: 2010 International Symposium on Collaborative Technologies and Systems (CTS), pp. 398–407, May 2010Google Scholar
  25. 25.
    Regnier-Coudert, O., McCall, J.: An Island model genetic algorithm for Bayesian network structure learning. In: IEEE CEC, pp. 1–8 (2012)Google Scholar
  26. 26.
    Simons, C., Parmee, I.: User-centered, evolutionary search in conceptual software design. In: IEEE Congress on Evolutionary Computation, 2008, CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 869–876, June 2008Google Scholar
  27. 27.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hierarchical System Structures. IEEE Trans. Syst. Man Cybern. SMC 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Takagi, H.: New topics from recent interactive evolutionary computation researches. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI), vol. 5177, p. 14. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Tonda, A., Lutton, E., Squillero, G., Wuillemin, P.-H.: A memetic approach to bayesian network structure learning. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 102–111. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Tonda, A.P., Lutton, E., Reuillon, R., Squillero, G., Wuillemin, P.-H.: Bayesian network structure learning from limited datasets through graph evolution. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 254–265. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Voulgari, I., Komis, V.: On studying collaborative learning interactions in massively multiplayer online games. In: 2011 Third International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), pp. 182–183, May 2011Google Scholar
  32. 32.
    Williams, L., Amant, R.S.: A visualization technique for Bayesian modeling. In: Proceedings of IUI’06 (2006)Google Scholar
  33. 33.
    Wong, M.L., Lam, W., Leung, K.S.: Using evolutionary programming and minimum description length principle for data mining of Bayesian networks. IEEE Trans. Pattern Anal. Mach. Intell. 21(2), 174–178 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alberto Tonda
    • 1
  • Andre Spritzer
    • 2
    • 3
  • Evelyne Lutton
    • 1
  1. 1.INRA UMR 782 GMPAThiverval-GrignonFrance
  2. 2.INRIA, AVIZ Team, Bat. 660, Université Paris-SudORSAY CedexFrance
  3. 3.Universidade Federal Do Rio Grande Do SulPorto AlegreBrazil

Personalised recommendations