Advertisement

Congestion Management in Motorways and Urban Networks Through a Bargaining-Game-Based Coordination Mechanism

  • Felipe Valencia
  • José D. López
  • Alfredo Núñez
  • Christian Portilla
  • Luis G. Cortes
  • Jairo Espinosa
  • Bart De Schutter
Chapter
Part of the Springer Series in Reliability Engineering book series (RELIABILITY)

Abstract

Road traffic networks are large-scale systems that demand distributed control strategies. Distributed model predictive control (DMPC) arises as a feasible alternative for traffic control. Distributed strategies decompose the whole traffic network into different subnetworks with local optimal controllers that make decisions on actions to be taken by the actuators responsible for traffic control (traffic lights, routing signals, variable speed limits, among others). However, subnetworks are interacting elements of the whole traffic network. Hence, local control decisions made for one sub-network affect and are influenced by the decisions taken for the other subnetworks. Under these circumstances, the DMPC traffic problem can be treated as a game where the rules are provided by the physical system, the players are the local optimal controllers, their strategies are the control sequences, and the payoffs are the local performance indices (such as the total time spent by the users in the network). This configuration allows the achievement of a computational burden reduction, with a compromise between local and global performance. Since DMPC local controllers are able to communicate with each other, the control of the traffic network corresponds to a cooperative game. In this chapter, game-theory-based DMPC is developed and tested for control of urban and motorway networks.

Keywords

Game theory Distributed model predictive control Large-scale systems Motorway control Urban traffic control Bargaining games 

Notes

Acknowledgments

Research supported by: COLCIENCIAS project Modelamiento y control de tráfico urbano en la ciudad de Medellín, código 1118-569-34640, CT 941-2012; the European 7th Framework Network of Excellence Highly complex and networked control systems (HYCON2) grant agreement No. 257962, by the European COST Action TU1102, and by the Solar Energy Research Center SERC-CHILE, FONDAP project 15110019.

References

  1. 1.
    Akira O (2005) A noncooperative approach to general n-person cooperative games. Discussion papers 2005-01, Graduate School of Economics, Hitotsubashi UniversityGoogle Scholar
  2. 2.
    Baskar LD, De Schutter B, Hellendoorn J (2009) Optimal routing for intelligent vehicle highway systems using a macroscopic traffic flow model. In: 12th international IEEE conference on intelligent transportation systems, ITSC ‘09, pp 1–6. doi: 10.1109/ITSC.2009.5309657
  3. 3.
    Bellemans T, De Schutter B, De Moor B (2006) Model predictive control for ramp metering of motorway traffic: a case study. Control Eng Pract 140(7):757–767. doi: 10.1016/j.conengprac.2005.03.010 CrossRefGoogle Scholar
  4. 4.
    Camponogara E, Jia D, Krogh BH, Talukdar S (2002) Distributed model predictive control. IEEE Control Syst Mag 22(1):44–52CrossRefGoogle Scholar
  5. 5.
    Du X, Xi Y, Li S (2001) Distributed model predictive control for large-scale systems. In: Proceedings of the 2001 American control conference, Arlington, USA, 25–27 June, pp 3142–3143Google Scholar
  6. 6.
    Ferrara A, Nai Oleari A, Sacone S, Siri S (2012) Freeway networks as systems of systems: an event-triggered distributed control scheme. In: Proceedings of the 7th IEEE conference on system of systems engineering, Genoa, Italy, July 2012, pp 197–202Google Scholar
  7. 7.
    Frejo JRD, Camacho EF (2012) Global versus local MPC algorithms in freeway traffic control with ramp metering and variable speed limits. IEEE Trans Intell Transp Syst 130(4):1556–1565CrossRefGoogle Scholar
  8. 8.
    Giovanini L, Balderud J (2006) Game approach to distributed model predictive control. In: Proceedings of the international control conference, Glasgow, Scotland, 30th Aug–1st Sept 2006Google Scholar
  9. 9.
    Groot N, De Schutter B, Zegeye SK, Hellendoorn H (2011) Model-based traffic and emission control using pwa models: a mixed-logical dynamic approach. In: 14th international IEEE conference on intelligent transportation systems (ITSC), Oct 2011, pp 2142–2147. doi: 10.1109/ITSC.2011.6082809
  10. 10.
    Haj-Salem H, Poirier P, Heylliard J-F, Peynaud J-P (2001) Alinea: a local traffic responsive strategy for ramp metering. field results on a6 motorway in paris. In: Proceedings 2001 IEEE intelligent transportation systems, pp 106–111. doi: 10.1109/ITSC.2001.948638
  11. 11.
    Harsanyi JC (1963) A simplified bargaining model for the n-person cooperative game. Int Econ Rev 40(2):194–220CrossRefGoogle Scholar
  12. 12.
    Hegyi A, De Schutter B, Hellendoorn H, Van den Boom T (2002) Optimal coordination of ramp metering and variable speed control-an mpc approach. In: Proceedings of the 2002 American control conference, vol 5, pp 3600–3605. doi:  10.1109/ACC.2002.1024487
  13. 13.
    Hegyi A, De Schutter B, Hellendoorn H (2005) Model predictive control for optimal coordination of ramp metering and variable speed limits. Transp Res Part C 130(3):185–209. doi: 10.1016/j.trc.2004.08.001 CrossRefGoogle Scholar
  14. 14.
    Jia D, Krogh BH (2001) Distributed model predictive control. In: Proceedings of the 2001 American control conference, Arlington, USA, 25–27 June, pp 2767–2772Google Scholar
  15. 15.
    Long K, Yun M, Zheng J, Yang X (2008) Model predictive control for variable speed limit in freeway work zone. In: 27th Chinese control conference, CCC 2008, July 2008, pp 488–493. doi: 10.1109/CHICC.2008.4605219
  16. 16.
    Kotsialos A, Papageorgiou M, Messmer A (1999) Optimal coordinated and integrated motorway network traffic control. In: Proceedings of the 14th international symposium on transportation and traffic theory (ISTTT), Jerusalem, Israel, pp 621–644Google Scholar
  17. 17.
    Kotsialos A, Papageorgiou M, Diakaki C, Pavlis Y, Middelham F (2002) Traffic flow modeling of large-scale motorway networks using the macroscopic modeling tool metanet. IEEE Trans Intell Transp Syst 30(4):282–292CrossRefGoogle Scholar
  18. 18.
    Kotsialos A, Papageorgiou M, Mangeas M, Haj-Salem H (2002) Coordinated and integrated control of motorway networks via non-linear optimal control. Transp Res Part C 10:65–84CrossRefGoogle Scholar
  19. 19.
    Li S, Zhang Y, Zhu Q (2005) Nash-optimization enhanced distributed model predictive control applied to the Shell benchmark problem. Inf Sci 1700(2–4):329–349CrossRefMathSciNetGoogle Scholar
  20. 20.
    Lin S (2011) Efficient model predictive control for large-scale urban traffic networks. PhD thesis, Delft University of Technology, DelftGoogle Scholar
  21. 21.
    Lin S, De Schutter B, Xi Y, Hellendoorn H (2011) Fast model predictive control for urban road networks via MILP. IEEE Trans Intell Transp Syst 120(3):846–856. doi: 10.1109/TITS.2011.2114652 ISSN 1524-9050CrossRefGoogle Scholar
  22. 22.
    Lin S, De Schutter B, Xi Y, Hellendoorn H (2012) Efficient network-wide model-based predictive control for urban traffic networks. Transp Res Part C: Eemerg Technol 240:122–140. ISSN 0968-090X. doi:http://dx.doi.org/10.1016/j.trc.2012.02.003. URL http://www.sciencedirect.com/science/article/pii/S0968090X12000150
  23. 23.
    Lu X-Y, Qiu TZ, Varaiya P, Horowitz R, Shladover SE (2010) Combining variable speed limits with ramp metering for freeway traffic control. In: American control conference (ACC), June 2010, pp 2266–2271Google Scholar
  24. 24.
    Maestre JM, Muñoz de la Peña D, Camacho EF (2011) Distributed model predictive control based on a cooperative game. Optimal Control Appl Methods 320(2):153–176CrossRefGoogle Scholar
  25. 25.
    Maestre JM, Muñoz de la Peña D, Jiménez Losada A, Algaba Durán E, Camacho EF (2011) An application of cooperative game theory to distributed control. In: Proceedings of the 18th IFAC world congress, Milan, pp 9121–9126Google Scholar
  26. 26.
    Maestre JM, Muñoz de la Peña D, Camacho EF, Alamo T (2011) Distributed model predictive control based on agent negotiation. J Process Control 10(5):685–697CrossRefGoogle Scholar
  27. 27.
    Muñoz de la Peña JM, Maestre D, Camacho EF (2009) Distributed MPC based on a cooperative game. In: Proceedings of the 48th IEEE conference on decision and control and 28th Chinese control conference, Shanghai, 15–18 Dec, pp 5390–5395Google Scholar
  28. 28.
    Myerson RB (1991) Game theory: analysis of conflict. Harvard University Press, Canbridge. ISBN 978-0-674-34116-6zbMATHGoogle Scholar
  29. 29.
    Nash J (1950) The bargaining problem. Econometrica 180(2):155–162CrossRefMathSciNetGoogle Scholar
  30. 30.
    J Nash (1950) Equilibrium points in N-persons games. In: Proc Nat Acad Sci USA 360(1):40–48Google Scholar
  31. 31.
    Nash J (1953) Two-person cooperative games. Econometrica 210(1):128–140CrossRefMathSciNetGoogle Scholar
  32. 32.
    Necoara I, Doan D, Suykens JAK (2008) Application of the proximal center decomposition method to distributed model predictive control. In: Proceedings of the 2008 IEEE conference on decision and control, Cancun, 9–11 Dec, pp 2900–2905Google Scholar
  33. 33.
    Negenborn RR, De Schutter B, Hellendoorn J (2008) Multi-agent model predictive control for transportation networks: serial versus parallel schemes. Eng Appl Artif Intell 210(3):353–366CrossRefGoogle Scholar
  34. 34.
    Papageorgiou M, Blosseville JM, Haj-Salemn H (1990) Modelling and real-time control of traffic flow on the southern part of boulevard peripherique in Paris: part ii: coordinated on-ramp metering. Transp Res Part A 240(5):361–370CrossRefGoogle Scholar
  35. 35.
    Papageorgiou M, Kosmatopoulos E, Papamichail I, Wang Y (2008) A misapplication of the local ramp metering strategy alinea. Intell Transp Syst IEEE Trans 90(2):360–365. doi: 10.1109/TITS.2008.922975 ISSN 1524-9050CrossRefGoogle Scholar
  36. 36.
    Peters HJM (1992) Axiomatic bargaining game theory. Kluwer Academic Publishers, DordrechtCrossRefzbMATHGoogle Scholar
  37. 37.
    Pimentel J, Salazar M (2002) Dependability of distributed control system fault tolerant units. Proc IECON 4:3164–3169Google Scholar
  38. 38.
    Portilla C, Valencia F, López JD, Espinosa J, Núñez A, De Schutter B (2012) Non-linear model predictive control based on game theory for traffic control on highways. In: Proceedings of the 4th IFAC nonlinear model predictive control conference, pp 436–441Google Scholar
  39. 39.
    Rantzer A (2006) Linear quadratic team theory revisited. In: Proceedings of the 2006 American control conference, Minneapolis, 14–16 June 2006Google Scholar
  40. 40.
    Rantzer A (2088) Using game theory for distributed control engineering. In: Proceedings of the 3rd world congress of the game theory society, Evanston, July 2008, pp 13–17Google Scholar
  41. 41.
    Rantzer A (2009) Dynamic dual decomposition for distributed control. In: Proceedings of the American control conference 2009, St Louis, 10–12 June, pp 884–888Google Scholar
  42. 42.
    Talukdar S, Jia D, Hines P, Krogh BH (2005) Distributed model predictive control for the mitigation of cascading failures. In: Proceedings of the 44th IEEE conference on decision and control, and the 2005 European control conference, Seville, 12–15 Dec, pp 4440–4445Google Scholar
  43. 43.
    Treiber M, Kesting A (2013) Traffic flow dynamics. Springer, BerlinGoogle Scholar
  44. 44.
    Trodden PA, Nicholson D, Richards AG (2009) Distributed model predictive control as a game with coupled contraints. In: Proceedings of the European control conference, Budapest, 23–26 Aug 2009Google Scholar
  45. 45.
    Valencia F (2012) Game theory based distributed model predictive control: an approach to large-scale systems control. PhD thesis, Facultad de Minas, Universidad Nacional de Colombia, MedellínGoogle Scholar
  46. 46.
    Valencia F, Espinosa JJ, De Schutter B, Staňková K (2011) Feasible-cooperation distributed model predictive control scheme based on game theory. In: Proceedings of the 18th IFAC world congress, Milan, pp 386–391Google Scholar
  47. 47.
    van den Berg M, Hegyi A, De Schutter B, Hellendoorn J (2003) A macroscopic traffic flow model for integrated control of freeway and urban traffic networks. In: Proceedings of the 42nd IEEE conference on decision and control, Maui, 09–12 Dec 2003, pp 2774–2779Google Scholar
  48. 48.
    Venkat AN, Rawlings JB, Wright SJ (2006) Implementable distributed model predictive control with guaranteed performance properties. In: Proceedings of the 2006 American control conference, Minneapolis, 14–16 June, pp 613–618Google Scholar
  49. 49.
    Venkat AN, Hiskens IA, Rawlings JB, Wright SJ (2006) Distributed MPC strategies for automatic generation control. In: Proceedings of the IFAC symposium on power plants and power systems control, Canada, pp 383–388Google Scholar
  50. 50.
    Venkat AN, Rawlings JB, Wright SJ (2006) Stability and optimality of distributed, linear model predictive control. Part I: state feedback. In: Texas-Wisconsin modeling and control consortium technical report 3Google Scholar
  51. 51.
    Von Neumann J, Morgenstern O, Kuhn HW, Rubinstein A (1947) Theory of games and economic behavior. Princeton University Press, PrincetonzbMATHGoogle Scholar
  52. 52.
    Wang FY, Cameron IT (2007) A multi-form modelling approach to the dynamics and control of drum granulation processes. Powder Technol 1790(1–2):2–11CrossRefGoogle Scholar
  53. 53.
    Yang SH, Chen X, Alty JL (2003) Design issues and implementation of Internet-based process control systems. Control Eng Pract 110(6):709–720CrossRefGoogle Scholar
  54. 54.
    Zegeye SK, De Schutter B, Hellendoorn J, Breunesse EA, Hegyi A (2012) A predictive traffic controller for sustainable mobility using parameterized control policies. IEEE Trans Intell Transp Syst 130(3):1420–1429. doi: 10.1109/TITS.2012.2197202 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Felipe Valencia
    • 1
  • José D. López
    • 2
  • Alfredo Núñez
    • 3
  • Christian Portilla
    • 4
  • Luis G. Cortes
    • 4
  • Jairo Espinosa
    • 4
  • Bart De Schutter
    • 5
  1. 1.Solar Energy Research Center SERC-Chile, Faculty of Mathematical and Physical SciencesUniversidad de ChileSantiagoChile
  2. 2.SISTEMIC, Department of Electronic Engineering, Engineering FacultyUniversidad de Antioquia UdeAMedellinColombia
  3. 3.Section of Road and Railway EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Departamento de Energía Eléctrica y Automática, Facultad de MinasUniversidad Nacional de ColombiaMedellinColombia
  5. 5.Delft Center for Systems and ControlDelft University of TechnologyDelftThe Netherlands

Personalised recommendations