Microbiome Ecosystem Ecology: Unseen Majority in an Anthropogenic Ecosystem

  • Muhammad SaleemEmail author
Part of the SpringerBriefs in Ecology book series (BRIEFSECOLOGY)


Microbiome or microbial diversity is the dominant component of the Earth’s biodiversity. Though present everywhere, the abundance of microbiome varies across different habitats depending on prevailing environmental and biogeographic conditions. Microbiome possesses a central role in general ecosystem ecology in addition to having tremendous applications in agricultural, industrial, and biomedical research. In the recent years, there has been a resurgence of interest to investigate global microbiome diversity (e.g., human, animal, plant, soil, air, ocean, and atmosphere, etc.) within the context of classical community ecology research in an effort to understand the functional role of this tiny majority in performing different services for human well-being. However, since a vast majority of the Earth’s microbiome is uncultured, microbial studies are largely survey-based descriptive reports resulting from DNA fingerprinting, thus making it difficult to link individual microbiome species to attribute to certain ecosystem service or function. This becomes more challenging in an era in which microbiome diversity across spatio-temporal scales is subjected to tremendous alterations in the ecosystem caused by land use and climate changes. Improving culture-dependent and-independent methods with broader applications of eco-statistical approaches may advance the understanding of global microbiome diversity, and thus could help us utilize microbiome resources more efficiently and effectively in this changing world.


Microbiome ecosystem ecology Global abundance Species concept Human well-being Climate and land-use changes Patterns and processes Community ecology 


  1. Andersson AF, Lindberg M, Jakobsson H et al (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836. doi:10.1371/journal.pone.0002836PubMedCentralPubMedCrossRefGoogle Scholar
  2. Andersson AF, Riemann L, Bertilsson S (2009) Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J 4:171–181. doi:10.1038/ismej.2009.108PubMedCrossRefGoogle Scholar
  3. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362. doi:10.1016/j.tibtech.2007.05.005PubMedCrossRefGoogle Scholar
  4. Arshad M, Hussain S, Saleem M (2008) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104:364–370. doi:10.1111/j.1365-2672.2007.03561.xPubMedGoogle Scholar
  5. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. doi:10.1038/nature09944PubMedCentralPubMedCrossRefGoogle Scholar
  6. Barraclough T, Balbi K, Ellis R (2012) Evolving concepts of bacterial species. Evolut Biol 39:148–157. doi:10.1007/s11692-012-9181-8CrossRefGoogle Scholar
  7. Bowers RM, Lauber CL, Wiedinmyer C et al (2009) Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 75:5121–5130. doi:10.1128/AEM.00447-09PubMedCentralPubMedCrossRefGoogle Scholar
  8. Burke C, Steinberg P, Rusch D et al (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A 108:14288–14293. doi:10.1073/pnas.1101591108PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cadillo-Quiroz H, Didelot X, Held NL et al (2012) Patterns of gene flow define species of thermophilic archaea. PLoS Biol 10:e1001265. doi:10.1371/journal.pbio.1001265PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270. doi:10.1038/nrg3182PubMedCentralPubMedGoogle Scholar
  11. Claridge MF, Dawah HA & Wilson MR (1997) Species: the units of biodiversity. Chapman & Hall Ltd.Google Scholar
  12. Costechareyre D, Bertolla F, Nesme X (2009) Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 26:167–176. doi:10.1093/molbev/msn236PubMedCrossRefGoogle Scholar
  13. Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. doi:10.1126/science.1177486PubMedCentralPubMedCrossRefGoogle Scholar
  14. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499. doi:10.1073/pnas.142680199PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449:811–818. doi:10.1038/nature06245PubMedCrossRefGoogle Scholar
  16. Enwall K, Throback IN, Stenberg M et al (2010) Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ Microbiol 76:2243–2250. doi:10.1128/AEM02197-09PubMedCentralPubMedCrossRefGoogle Scholar
  17. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306. doi:10.1126/science.1205106PubMedCrossRefGoogle Scholar
  18. Fierer N, Lennon JT (2011) The generation and maintenance of diversity in microbial communities. Am J Bot 98(3):439–448. doi:10.3732/ajb.1000498PubMedCrossRefGoogle Scholar
  19. Fierer N, Breitbart M, Nulton J et al (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066. doi:10.1128/AEM.00358-07PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 105:17994–17999. doi:10.1073/pnas.0807920105PubMedCentralPubMedCrossRefGoogle Scholar
  21. Fraser C, Alm EJ, Polz MF et al (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746. doi:10.1126/science.1159388PubMedCrossRefGoogle Scholar
  22. Fredricks DN (2001) Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc 6:167–169. doi:10.1046/j.0022-202x.2001.00039.xPubMedCrossRefGoogle Scholar
  23. Gaidos E, Marteinsson V, Thorsteinsson T et al (2008) An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. ISME J 3:486–497. doi:10.1038/ismej.2008.124PubMedCrossRefGoogle Scholar
  24. Gevers D, Cohan FM, Lawrence JG et al (2005) Re-evaluating prokaryotic species. Nat Rev Micro 3:733–739. doi:10.1038/nrmicro1236CrossRefGoogle Scholar
  25. Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043. doi:10.1126/science.1153475PubMedCrossRefGoogle Scholar
  26. Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Micro 9:244–253. doi:10.1038/nrmicro2537CrossRefGoogle Scholar
  27. Hanage WP, Fraser C, Spratt BG (2006) Sequences, sequence clusters and bacterial species. Philos Trans R Soc Lond B Biol Sci 361:1917–1927. doi:10.1098/rstb.2006.1917PubMedCentralPubMedCrossRefGoogle Scholar
  28. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685. doi:10.1128/MMBR.68.4.669-685.2004PubMedCentralPubMedCrossRefGoogle Scholar
  29. Huber JA, Welch DBM, Morrison HG et al (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100. doi:10.1126/science.1146689PubMedCrossRefGoogle Scholar
  30. Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of alpha- and beta-endosulfan by soil bacteria. Biodegradation 18:731–740. doi:10.1007/s10532-007-9102-1PubMedCrossRefGoogle Scholar
  31. Hussain S, Siddique T, Arshad M, Saleem M (2009a) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907. doi:10.1080/10643380801910090Google Scholar
  32. Hussain S, Siddique T, Saleem M et al (2009b) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advan Agron 102:159–200Google Scholar
  33. Hussain S, Arshad M, Shaharoona B, Saleem M, Khalid A (2009c) Concentration dependent growth/non-growth linked kinetics of endosulfan biodegradation by Pseudomonas aeruginosa. World J Microbiol Biotechnol 25(5):853–858. doi:10.1007/s11274-009-9958-9Google Scholar
  34. Keijser BJF, Zaura E, Huse SM et al (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87:1016–1020. doi:10.1177/154405910808701104Google Scholar
  35. Lederberg J, Mccray A (2001) The scientist: ‘ome sweet’ omics—a genealogical treasury of words. The Sci 17(7)Google Scholar
  36. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Micro 9:119–130. doi:10.1038/nrmicro2504CrossRefGoogle Scholar
  37. Logue JB, Bürgmann H, Robinson CT (2008) Progress in the ecological genetics and biodiversity of freshwater bacteria. Bioscience 58:103. doi:10.1641/B580205CrossRefGoogle Scholar
  38. Luo C, Walk ST, Gordon DM et al (2011) Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci U S A 108:7200–7205. doi:10.1073/pnas.1015622108PubMedCentralPubMedCrossRefGoogle Scholar
  39. Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F et al (2011) Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J 5:574–579. doi:10.1038/ismej.2010.149PubMedCentralPubMedCrossRefGoogle Scholar
  40. Martiny JBH, Bohannan BJM, Brown JH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Micro 4:102–112. doi:10.1038/nrmicro1341CrossRefGoogle Scholar
  41. Mayr E (1942) Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University PressGoogle Scholar
  42. McLellan SL, Huse SM, Mueller-Spitz SR et al (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12:378–392. doi:10.1111/j.1462-2920.2009.02075.xPubMedCentralPubMedCrossRefGoogle Scholar
  43. Morlon H, Kemps BD, Plotkin JB, Brisson D (2012) Explosive radiation of a bacterial species group. Evolution Int J org Evolution. doi:10.1111/j.1558-5646.2012.01598.xGoogle Scholar
  44. Moya A, Peretó J, Gil R, Latorre A (2008) Learning how to live together: genomic insights into prokaryote–animal symbioses. Nat Rev Genet 9:218–229. doi:10.1038/nrg2319PubMedCrossRefGoogle Scholar
  45. Peiffer JA, Spor A, Koren O et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553. doi:10.1073/pnas.1302837110PubMedCentralPubMedCrossRefGoogle Scholar
  46. Prosser JI, Bohannan BJM, Curtis TP et al (2007) The role of ecological theory in microbial ecology. Nat Rev Micro 5:384–392. doi:10.1038/nrmicro1643CrossRefGoogle Scholar
  47. Ramette A, Tiedje JM (2006) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–207. doi:10.1007/s00248-005-5010-2CrossRefGoogle Scholar
  48. Ravel J, Gajer P, Abdo Z et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108(Suppl 1):4680–4687. doi:10.1073/pnas.1002611107PubMedCentralPubMedCrossRefGoogle Scholar
  49. Redford AJ, Bowers RM, Knight R et al (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893. doi:10.1111/j.1462-2920.2010.02258.xPubMedCentralPubMedCrossRefGoogle Scholar
  50. Retchless AC, Lawrence JG (2007) Temporal fragmentation of speciation in bacteria. Science 317:1093–1096. doi:10.1126/science.1144876PubMedCrossRefGoogle Scholar
  51. Roesch LFW, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. doi:10.1038/ismej.2007.53Google Scholar
  52. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67. doi:10.1111/j.1574-6976.2001.tb00571.xPubMedCrossRefGoogle Scholar
  53. Saleem M (2012). Bacteria-protist interactions in the context of biodiversity and ecosystem functioning research (Doctoral dissertation)Google Scholar
  54. Saleem M, Moe LA (2014) Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice. Trends Biotechnol 32(10):529–537. doi:10.1016/j.tibtech.2014.08.002PubMedCrossRefGoogle Scholar
  55. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648. doi:10.1007/s10295-007-0240-6PubMedCrossRefGoogle Scholar
  56. Saleem M, Brim H, Hussain S, Arshad M, Leigh MB (2008). Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26(2):151–161. doi:10.1016/j.biotechadv.2007.10.002PubMedCrossRefGoogle Scholar
  57. Saleem M, Fetzer I, Dormann CF et al (2012) Predator richness increases the effect of prey diversity on prey yield. Nat Commun 3:1305. doi:10.1038/ncomms2287PubMedCrossRefGoogle Scholar
  58. Saleem M, Fetzer I, Harms H, Chatzinotas A (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J 7:1912–1921. doi:10.1038/ismej.2013.95PubMedCentralPubMedCrossRefGoogle Scholar
  59. Saleem M, Fetzer I, Harms H, Chatzinotas A (2015) Trophic complexity in aqueous systems: Bacterial species richness and protistan predation regulate DOC and DTN removalGoogle Scholar
  60. Sharp M, Parkes J, Cragg B et al (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110. doi:10.1130/0091-7613(1999)027:WBPAGB2.3.CO;2CrossRefGoogle Scholar
  61. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526. doi:10.1128/AEM.00946-09PubMedCentralPubMedCrossRefGoogle Scholar
  62. Smith NH, Gordon SV, Rua-Domenech R de la et al (2006) Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 4:670–681. doi:10.1038/nrmicro1472PubMedCrossRefGoogle Scholar
  63. Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103(32):12115–12120. doi:10.1073/pnas.0605127103PubMedCentralPubMedCrossRefGoogle Scholar
  64. Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296:1064–1066. doi:10.1126/science.1071698PubMedCrossRefGoogle Scholar
  65. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. doi:10.1038/nature07540PubMedCentralPubMedCrossRefGoogle Scholar
  66. Turner TR, Ramakrishnan K, Walshaw J et al (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258. doi:10.1038/ismej.2013.119PubMedCentralPubMedCrossRefGoogle Scholar
  67. Vaahtovuo J, Korkeamäki M, Munukka E et al (2005) Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry. J Microbiol Methods 63:276–286. doi:10.1016/j.mimet.2005.03.017PubMedCrossRefGoogle Scholar
  68. Vellend M (2010) Conceptual synthesis in community ecology. Quart Rev Biol 85:183–206. doi:10.1086/652373PubMedCrossRefGoogle Scholar
  69. Vos M (2011) A species concept for bacteria based on adaptive divergence. Trends Microbiol 19:1–7. doi:10.1016/j.tim.2010.10.003PubMedCrossRefGoogle Scholar
  70. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The University of KentuckyLexingtonUSA

Personalised recommendations