Advertisement

Transcript Secure Signatures Based on Modular Lattices

  • Jeff Hoffstein
  • Jill Pipher
  • John M. Schanck
  • Joseph H. Silverman
  • William Whyte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8772)

Abstract

We introduce a class of lattice-based digital signature schemes based on modular properties of the coordinates of lattice vectors. We also suggest a method of making such schemes transcript secure via a rejection sampling technique of Lyubashevsky (2009). A particular instantiation of this approach is given, using NTRU lattices. Although the scheme is not supported by a formal security reduction, we present arguments for its security and derive concrete parameters based on the performance of state-of-the-art lattice reduction and enumeration techniques.

Keywords

Signature Scheme Modular Lattice Valid Signature Short Vector Rejection Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: Cryptanalysis of NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008)Google Scholar
  3. 3.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Hoffstein, J., Pipher, J., Silverman, J.H.: An Introduction to Mathematical Cryptography. Undergraduate Texts in Mathematics. Springer, New York (2008)zbMATHGoogle Scholar
  5. 5.
    Hoffstein, J., Silverman, J.: Optimizations for NTRU. In: Public-Key Cryptography and Computational Number Theory, Warsaw, pp. 77–88. de Gruyter, Berlin (2001)Google Scholar
  6. 6.
    Hoffstein, J., Silverman, J.H.: Random small Hamming weight products with applications to cryptography. Discrete Applied Mathematics 130(1), 37–49 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    May, A., Silverman, J.H.: Dimension reduction methods for convolution modular lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 110–125. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. J. Cryptology 22(2), 139–160 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jeff Hoffstein
    • 1
  • Jill Pipher
    • 1
  • John M. Schanck
    • 2
    • 3
  • Joseph H. Silverman
    • 1
  • William Whyte
    • 3
  1. 1.Brown UniversityProvidenceUSA
  2. 2.University of WaterlooWaterlooCanada
  3. 3.Security InnovationWilmingtonUSA

Personalised recommendations