Advertisement

Optimizing Information Set Decoding Algorithms to Attack Cyclosymmetric MDPC Codes

  • Ray Perlner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8772)

Abstract

Recently, several promising approaches have been proposed to reduce keysizes for code based cryptography using structured, but non-algebraic codes, such as quasi-cyclic (QC) Moderate Density Parity Check (MDPC) codes. Biasi et al. propose further reducing the keysizes of code-based schemes using cyclosymmetric (CS) codes. While Biasi et al. analyze the complexity of attacking their scheme using standard information-set-decoding algorithms, the research presented here shows that information set decoding algorithms can be improved, by choosing the columns of the information set in a way that takes advantage of the added symmetry. The result is an attack that significantly reduces the security of the proposed CS-MDPC schemes to the point that they no longer offer an advantage in keysize over QC-MDPC schemes of the same security level. QC-MDPC schemes are not affected by this paper’s result.

Keywords

information set decoding code-based cryptography moderate density parity check (MDPC) codes cyclosymmetric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space Network Progress Report 44, 114–116 (1978)Google Scholar
  2. 2.
    Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Misoczki, R., Barreto, P.S.L.M.: Compact mceliece keys from goppa codes. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of mcEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: Mdpc-mceliece: New mceliece variants from moderate density parity-check codes. Cryptology ePrint Archive, Report 2012/409 (2012), http://eprint.iacr.org/
  6. 6.
    Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions on Information Theory 8, 5–9 (1962)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  8. 8.
    Leon, J.: A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Transactions on Information Theory 34, 1354–1359 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen, G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  10. 10.
    Biasi, F., Barreto, P., Misoczki, R., Ruggiero, W.: Scaling efficient code-based cryptosystems for embedded platforms. Journal of Cryptographic Engineering, 1–12 (2014)Google Scholar
  11. 11.
    Barreto, P.: Can code-based keys and cryptograms get smaller than their rsa counterparts (2012)Google Scholar
  12. 12.
    Biasi, F.P., Barreto, P.S., Misoczki, R., Ruggiero, W.V.: Scaling efficient code-based cryptosystems for embedded platforms. arXiv preprint arXiv:1212.4317 (2012)Google Scholar
  13. 13.
    Neiderreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory. Problemy Upravlenija i Teorii Informacii (15) 159–166Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ray Perlner
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations