Advertisement

An Asymptotically Optimal Structural Attack on the ABC Multivariate Encryption Scheme

  • Dustin Moody
  • Ray Perlner
  • Daniel Smith-Tone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8772)

Abstract

Historically, multivariate public key cryptography has been less than successful at offering encryption schemes which are both secure and efficient. At PQCRYPTO ’13 in Limoges, Tao, Diene, Tang, and Ding introduced a promising new multivariate encryption algorithm based on a fundamentally new idea: hiding the structure of a large matrix algebra over a finite field. We present an attack based on subspace differential invariants inherent to this methodology. The attack is a structural key recovery attack which is asymptotically optimal among all known attacks (including algebraic attacks) on the original scheme and its generalizations.

Keywords

multivariate public key cryptography differential invariant encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comp. 26, 1484 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Chen, A.I.-T., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M., Yang, B.-Y.: Practical-sized instances of multivariate PKCs: Rainbow, TTS, and ℓIC-derivatives. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 95–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Yang, B.-Y., Cheng, C.-M., Chen, B.-R., Chen, J.-M.: Implementing minimized multivariate PKC on low-resource embedded systems. In: Clark, J.A., Paige, R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 73–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Patarin, J., Goubin, L., Courtois, N.T.: C  − + * and HM: Variations around two schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – A multivariate signature scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Anonymous: New parameters for quartz. Private Communication (2013)Google Scholar
  10. 10.
    Ding, J., Yang, B.Y.: Degree of regularity for hfev and hfev-. In: [23], pp. 52–66Google Scholar
  11. 11.
    Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Tsujii, S., Gotaishi, M., Tadaki, K., Fujita, R.: Proposal of a signature scheme based on STS trapdoor. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 201–217. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In: [23], pp. 231–242Google Scholar
  14. 14.
    Tao, C., Diene, A., Tang, S., Ding, J.: Improvement of simple matrix scheme for encryption. Personally Communicated (2013), Corresponding Author: Ding, J.Google Scholar
  15. 15.
    Bardet, M., Faugere, J.C., Salvy, B.: On the complexity of gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proceedings of the International Conference on Polynomial System Solving (2004)Google Scholar
  16. 16.
    Perlner, R.A., Smith-Tone, D.: A classification of differential invariants for multivariate post-quantum cryptosystems. In: [23], pp. 165–173Google Scholar
  17. 17.
    Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosystems: The new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Ding, J., Buchmann, J., Mohamed, M., Mohamed, W., Weinmann, R.: Mutant xl. In: SCC 2008, LMIB, pp. 16–22 (2008)Google Scholar
  19. 19.
    Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving polynomial equations over GF(2) using an improved mutant strategy. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An efficient algorithm for computing gröbner bases of zero-dimensional ideals. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Faugère, J.C., Din, M.S.E., Spaenlehauer, P.J.: Computing loci of rank defects of linear matrices using gröbner bases and applications to cryptology. In: Koepf, W. (ed.) ISSAC, pp. 257–264. ACM (2010)Google Scholar
  22. 22.
    Bettale, L., Faugère, J.C., Perret, L.: Cryptanalysis of hfe, multi-hfe and variants for odd and even characteristic. Des. Codes Cryptography 69, 1–52 (2013)CrossRefzbMATHGoogle Scholar
  23. 23.
    Gaborit, P. (ed.): PQCrypto 2013. LNCS, vol. 7932. Springer, Heidelberg (2013)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dustin Moody
    • 1
  • Ray Perlner
    • 1
  • Daniel Smith-Tone
    • 1
    • 2
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Department of MathematicsUniversity of LouisvilleLouisvilleUSA

Personalised recommendations