IncQuery-D: A Distributed Incremental Model Query Framework in the Cloud

  • Gábor Szárnyas
  • Benedek Izsó
  • István Ráth
  • Dénes Harmath
  • Gábor Bergmann
  • Dániel Varró
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8767)


Queries are the foundations of data intensive applications. In model-driven software engineering (MDE), model queries are core technologies of tools and transformations. As software models are rapidly increasing in size and complexity, traditional tools exhibit scalability issues that decrease productivity and increase costs [17]. While scalability is a hot topic in the database community and recent NoSQL efforts have partially addressed many shortcomings, this happened at the cost of sacrificing the ad-hoc query capabilities of SQL. Unfortunately, this is a critical problem for MDE applications due to their inherent workload complexity. In this paper, we aim to address both the scalability and ad-hoc querying challenges by adapting incremental graph search techniques – known from the EMF-IncQuery framework – to a distributed cloud infrastructure. We propose a novel architecture for distributed and incremental queries, and conduct experiments to demonstrate that IncQuery-D, our prototype system, can scale up from a single workstation to a cluster that can handle very large models and complex incremental queries efficiently.


Resource Description Framework Query Evaluation SPARQL Query Model Query Graph Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    OpenLink Software: Virtuoso Universal Server,
  2. 2.
    Sesame: RDF API and Query Engine,
  3. 3.
    Atlanmod research team. NEO4EMF (October 2013),
  4. 4.
    Bergmann, G.: Incremental Model Queries in Model-Driven Design. Ph.D. dissertation, Budapest University of Technology and Economics, Budapest (October 2013)Google Scholar
  5. 5.
    Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös, A.: Incremental Evaluation of Model Queries over EMF Models. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 76–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Eclipse MDT Project. Eclispe OCL website (2011),
  7. 7.
    Espinazo Pagán, J., Sánchez Cuadrado, J., García Molina, J.: Morsa: A scalable approach for persisting and accessing large models. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 77–92. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligences 19(1), 17–37 (1982)CrossRefGoogle Scholar
  9. 9.
    Geiß, R., Kroll, M.: On improvements of the Varro benchmark for graph transformation tools. Technical Report 2007-7, Universität Karlsruhe, IPD Goos, 12, (2007) ISSN 1432-7864Google Scholar
  10. 10.
    Goldschmidt, T., Uhl, A.: Efficient OCL impact analysis (2011)Google Scholar
  11. 11.
    R.C.W. Group. Resource Description Framework (RDF) (2004),
  12. 12.
    Harris, S., Lamb, N., Shadbolt, N.: 4store: The design and implementation of a clustered RDF store. In: 5th International Workshop on Scalable Semantic Web Knowledge Base Systems, SSWS 2009 (2009)Google Scholar
  13. 13.
    Hillairet, G., Bertrand, F., Lafaye, J.Y., et al.: Bridging emf applications and rdf data sources. In: Proceedings of the 4th International Workshop on Semantic Web Enabled Software Engineering, SWESE (2008)Google Scholar
  14. 14.
    Izsó, B., Szárnyas, G., Ráth, I., Varró, D.: Incquery-d: Incremental graph search in the cloud. In: Proceedings of the Workshop on Scalability in Model Driven Engineering, BigMDE 2013, pp. 4:1–4:4. ACM, New York (2013)Google Scholar
  15. 15.
    Izsó, B., Szatmári, Z., Bergmann, G., Horváth, Á., Ráth, I.: Towards precise metrics for predicting graph query performance. In: 2013 IEEE/ACM 28th International Conference on Automated Software Engineering (ASE), Silicon Valley, CA, USA, pp. 412–431. IEEE (November 2013)Google Scholar
  16. 16.
    Jouault, F., Sottet, J.-S., et al.: An AmmA/ATL solution for the grabats 2009 reverse engineering case study. In: 5th International Workshop on Graph-Based Tools, Grabats (2009)Google Scholar
  17. 17.
    Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M., Cabot, J.: A research roadmap towards achieving scalability in model driven engineering. In: Proceedings of the Workshop on Scalability in Model Driven Engineering, BigMDE 2013, pp. 2:1–2:10. ACM, New York (2013)Google Scholar
  18. 18.
    Miranker, D.P., Lofaso, B.J.: The Organization and Performance of a TREAT-Based Production System Compiler. IEEE Trans. on Knowl. and Data Eng. 3(1), 3–10 (1991)CrossRefGoogle Scholar
  19. 19.
    Miranker, D.P., et al.: Diamond: A SPARQL query engine, for linked data based on the Rete match. In: AImWD (2012)Google Scholar
  20. 20.
    Neo Technology. Neo4j (2013),
  21. 21.
    Reder, A., Egyed, A.: Incremental consistency checking for complex design rules and larger model changes. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 202–218. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Rinne, M.: SPARQL update for complex event processing. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 453–456. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. CoRR, abs/1006.2361 (2010)Google Scholar
  24. 24.
    Taylor, A., Jones, A.: Cypher Query Lang (2012)Google Scholar
  25. 25.
    The Eclipse Project. Eclipse Modeling Framework,
  26. 26.
    The MOGENTES project. Model-Based Generation of Tests for Dependable Embedded Systems,
  27. 27.
    The MONDO project. Scalable Modelling and Model Management on the Cloud,
  28. 28.
    Typesafe, Inc. Akka documentation (2013),
  29. 29.
    Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári, Z., Varró, D.: EMF-IncQuery: An integrated development environment for live model queries. Science of Computer Programming (accepted 2014)Google Scholar
  30. 30.
    Ujhelyi, Z., Horváth, Á., Varró, D., Csiszár, N.I., Szőke, G., Vidács, L., Ferenc, R.: Anti-pattern Detection with Model Queries: A Comparison of Approaches. In: IEEE CSMR-WCRE 2014 Software Evolution Week. IEEE (2014)Google Scholar
  31. 31.
    Varró, G., Deckwerth, F.: A rete network construction algorithm for incremental pattern matching. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp. 125–140. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  32. 32.
    Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In: Proc. IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2005), Dallas, Texas, USA, pp. 79–88. IEEE Press (September 2005)Google Scholar
  33. 33.
    W3C. SPARQL Query Language for RDF,
  34. 34.
    Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for web scale rdf data. In: Proceedings of the 39th International Conference on Very Large Data Bases, PVLDB 2013, pp. 265–276. VLDB Endowment (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gábor Szárnyas
    • 1
  • Benedek Izsó
    • 1
  • István Ráth
    • 1
  • Dénes Harmath
    • 4
  • Gábor Bergmann
    • 1
  • Dániel Varró
    • 1
    • 2
    • 3
  1. 1.Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.DIROUniversité de MontréalCanada
  3. 3.MSDL, Dept. of Computer ScienceMcGill UniversityCanada
  4. 4.IncQuery Labs Ltd.BudapestHungary

Personalised recommendations