Learning Implicit and Explicit Control in Model Transformations by Example

  • Islem Baki
  • Houari Sahraoui
  • Quentin Cobbaert
  • Philippe Masson
  • Martin Faunes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8767)


We propose an evolutionary approach that, in addition to learn model transformation rules from examples, allows to capture implicit and explicit control over the transformation rules. The derivation of both transformation and control knowledge is performed through a heuristic search, i.e., a genetic programming algorithm, guided by the conformance with examples of past transformations supplied as pairs of source and target models. Our approach is evaluated on four model transformation problems that require non-trivial control. The obtained results are convincing for three of the four studied problems.


Model transformation by example transformation control genetic programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balogh, Z., Varró, D.: Model transformation by example using inductive logic programming. Software and Systems Modeling 8, 347–364 (2009)CrossRefGoogle Scholar
  2. 2.
    Biehl, M.: Literature study on model transformations. Royal Institute of Technology, Tech. Rep. ISRN/KTH/MMK (2010)Google Scholar
  3. 3.
    Braun, P., Marschall, F.: Transforming object oriented models with botl. Electronic Notes in Theoretical Computer Science 72(3), 103–117 (2003)CrossRefGoogle Scholar
  4. 4.
    Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Systems Journal 45(3), 621–646 (2006)CrossRefGoogle Scholar
  5. 5.
    de Lara, J., Vangheluwe, H.: Atom3: A tool for multi-formalism and meta-modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Dolques, X., Huchard, M., Nebut, C., Reitz, P.: Learning transformation rules from transformation examples: An approach based on relational concept analysis. In: Int. Conf. on Enterprise Distributed Object Computing Workshops, pp. 27–32 (2010)Google Scholar
  7. 7.
    Drey, Z., Faucher, C., Fleurey, F., Mahé, V., Vojtisek, D.: Kermeta language reference manual (2009)Google Scholar
  8. 8.
    Faunes, M., Sahraoui, H., Boukadoum, M.: Generating model transformation rules from examples using an evolutionary algorithm. In: Automated Software Engineering, pp. 1–4 (2012)Google Scholar
  9. 9.
    Faunes, M., Sahraoui, H., Boukadoum, M.: Genetic-programming approach to learn model transformation rules from examples. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp. 17–32. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19(1), 17–37 (1982)CrossRefGoogle Scholar
  11. 11.
    García-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model transformation by-example: An algorithm for generating many-to-many transformation rules in several model transformation languages. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 52–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Hill, E.F.: Jess in Action: Java Rule-Based Systems (2003)Google Scholar
  13. 13.
    Jouault, F., Kurtev, I.: Transforming models with atl. In: Bruel, J.-M. (ed.) MoDELS 2005 Workshops. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model transformation as an optimization problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Kessentini, M., Sahraoui, H., Boukadoum, M., Omar, O.B.: Search-based model transformation by example. Software and System Modeling 11(2), 209–226 (2012)CrossRefGoogle Scholar
  16. 16.
    Koza, J., Poli, R.: Genetic programming. In: Search Methodologies, pp. 127–164 (2005)Google Scholar
  17. 17.
    Langer, P., Wimmer, M., Kappel, G.: Model-to-model transformations by demonstration. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 153–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes Theor. Comput. Sci. 152, 125–142 (2006)CrossRefGoogle Scholar
  19. 19.
    ModelMorf, T.: A model transformer (2008)Google Scholar
  20. 20.
    Pachet, F., Perrot, J.-F.: Rule firing with metarules. In: SEKE, pp. 322–329 (1994)Google Scholar
  21. 21.
    Saada, H., Dolques, X., Huchard, M., Nebut, C., Sahraoui, H.: Generation of operational transformation rules from examples of model transformations. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 546–561. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Telecom, F.: Smartqvt: An open source model transformation tool implementing the mof 2.0 qvt-operational language (2007)Google Scholar
  24. 24.
    Varró, D.: Model transformation by example. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Varró, D., Balogh, A.: The model transformation language of the viatra2 framework. Science of Computer Programming 68(3), 214–234 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transformation generation by-example. In: Annual Hawaii Int. Conf. on System Sciences, p. 285b (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Islem Baki
    • 1
  • Houari Sahraoui
    • 1
  • Quentin Cobbaert
    • 1
    • 2
  • Philippe Masson
    • 1
    • 2
  • Martin Faunes
    • 1
  1. 1.DIROUniversité de MontréalCanada
  2. 2.Université de NamurBelgium

Personalised recommendations