Comprehending Feature Models Expressed in CVL

  • Iris Reinhartz-Berger
  • Kathrin Figl
  • Øystein Haugen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8767)


Feature modeling is a common way to present and manage variability of software and systems. As a prerequisite for effective variability management is comprehensible representation, the main aim of this paper is to investigate difficulties in understanding feature models. In particular, we focus on the comprehensibility of feature models as expressed in Common Variability Language (CVL), which was recommended for adoption as a standard by the Architectural Board of the Object Management Group. Using an experimental approach with participants familiar and unfamiliar with feature modeling, we analyzed comprehensibility in terms of comprehension score, time spent to complete tasks, and perceived difficulty of different feature modeling constructs. The results showed that familiarity with feature modeling did not influence the comprehension of mandatory, optional, and alternative features, although unfamiliar modelers perceived these elements more difficult than familiar modelers. OR relations were perceived as difficult regardless of the familiarity level, while constraints were significantly better understood by familiar modelers. The time spent to complete tasks was higher for familiar modelers.


Variability analysis Software Product Line Engineering Model Comprehension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations, Principles, and Techniques. Springer (2005)Google Scholar
  2. 2.
    Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley, Boston (2001)Google Scholar
  3. 3.
    Chen, L., Ali Babar, M.: A systematic review of evaluation of variability management approaches in software product lines. Information and Software Technology 53, 344–362 (2011)CrossRefGoogle Scholar
  4. 4.
    Haugen, Ø.: Common Variability Language (CVL) – OMG Revised Submission. OMG document ad/2012-08-05 (2012)Google Scholar
  5. 5.
    Istoan, P., Klein, J., Perouin, G., Jezequel, J.-M.: A Metamodel-based Classification of Variability Modeling Approaches. In: VARiability for You Workshop, pp. 23–32 (2011)Google Scholar
  6. 6.
    Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wąsowski, A.: Cool features and tough decisions: A comparison of variability modeling approaches. In: Proceedings of the Sixth International Workshop on Variability Modeling of Software-Intensive Systems, pp. 173–182. ACM, Leipzig (2012)CrossRefGoogle Scholar
  7. 7.
    Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature Diagrams: A Survey and a Formal Semantics. In: Proceedings of the 14th IEEE International Requirements Engineering Conference, pp. 136-145. IEEE Computer Society (2006)Google Scholar
  8. 8.
    Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R., Classen, A.: Evaluating formal properties of feature diagram languages. IET Software 2, 281–302 (2008)CrossRefGoogle Scholar
  9. 9.
    Krogstie, J., Sindre, G., Jørgensen, H.D.: Process Models Representing Knowledge for Action: A Revised Quality Framework. European Journal of Information Systems 15, 91–102 (2006)CrossRefGoogle Scholar
  10. 10.
    Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics”? Computer 37, 64–72 (2004)CrossRefGoogle Scholar
  11. 11.
    Djebbi, O., Salinesi, C.: Criteria for Comparing Requirements Variability Modeling Notations for Product Lines. In: Workshops on Comparative Evaluation in Requirements Engineering, pp. 20–35 (2006)Google Scholar
  12. 12.
    Haugen, Ø., Møller-Pedersen, B., Oldevik, J.: Comparison of System Family Modeling Approaches. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 102–112. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Matinlassi, M.: Comparison of software product line architecture design methods: COPA, FAST, FORM, KobrA and QADA. In: Proceedings of the 26th International Conference on Software Engineering, ICSE 2004, pp. 127–136 (2004)Google Scholar
  14. 14.
    Jayaratna, N.: Understanding and Evaluating Methodologies: NIMSAD, a Systematic Framework. McGraw-Hill, Inc. (1994)Google Scholar
  15. 15.
    Mylopoulos, J.: Conceptual Modeling and Telos. In: Loucopoulos, P., Zicari, R. (eds.) Conceptual Modeling, pp. 49–68. John Wiley and Sons, New York (1992)Google Scholar
  16. 16.
    Reinhartz-Berger, I., Tsoury, A.: Experimenting with the Comprehension of Feature-Oriented and UML-Based Core Assets. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 468–482. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Reinhartz-Berger, I., Tsoury, A.: Specification and Utilization of Core Assets: Feature-Oriented vs. UML-Based Methods. In: De Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER Workshops 2011. LNCS, vol. 6999, pp. 302–311. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints: a progress report. In: International Workshop on Software Factories at OOPSLA. ACM (2005)Google Scholar
  19. 19.
    Reinhartz-Berger, I., Sturm, A.: Utilizing domain models for application design and validation. Inf. Softw. Technol. 51, 1275–1289 (2009)CrossRefGoogle Scholar
  20. 20.
    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation in Software Engineering – An Introduction. Kluwer Academic Publishers (2000)Google Scholar
  21. 21.
    Petre, M.: Why looking isn’t always seeing: readership skills and graphical programming. Commun. ACM 38, 33–44 (1995)CrossRefGoogle Scholar
  22. 22.
    Kumar, S., Karoli, V.: Handbook of Business Research Methods. Thakur Publishers (2011)Google Scholar
  23. 23.
    Parsons, J., Cole, L.: What do the Pictures mean? Guidelines for Experimental Evaluation of Representation Fidelity in Diagrammatical Conceptual Modeling Techniques. Data and Knowledge Engineering 55 (2005)Google Scholar
  24. 24.
    Recker, J.: Continued Use of Process Modeling Grammars: The Impact of Individual Difference Factors. European Journal of Information Systems 19, 76–92 (2010)CrossRefGoogle Scholar
  25. 25.
    Svahnberg, M., Aurum, A., Wohlin, C.: Using students as subjects - an empirical evaluation. In: Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, pp. 288–290. ACM, Kaiserslautern (2008)CrossRefGoogle Scholar
  26. 26.
    Siau, K., Loo, P.-P.: Identifying Difficulties in Learning UML. Information Systems Management 23, 43–51 (2006)CrossRefGoogle Scholar
  27. 27.
    Preacher, K., Rucker, D., MacCallum, R., Nicewander, W.: Use of the Extreme Groups Approach: A Critical Reexamination and New Recommendations. Psychol Methods 10, 178–192 (2005)CrossRefGoogle Scholar
  28. 28.
    Nunnally, J.C., Bernstein, I.H.: Psychometric Theory. McGraw-Hill, New York (1994)Google Scholar
  29. 29.
    Recker, J., Dreiling, A.: The Effects of Content Presentation Format and User Characteristics on Novice Developers’ Understanding of Process Models. Communications of the Association for Information Systems 22 (2011)Google Scholar
  30. 30.
    Naess, A.: A Study of ‘Or’. Synthese 13, 49–60 (1961)CrossRefGoogle Scholar
  31. 31.
    Mendling, J., Reijers, H., van der Aalst, W.M.P.: Seven process modeling guidelines (7PMG). Information and Software Technology 52 (2010)Google Scholar
  32. 32.
    Moody, D.L.: The “Physics” of Notations: Towards a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Transactions on Software Engineering 35, 756–779 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Iris Reinhartz-Berger
    • 1
  • Kathrin Figl
    • 2
  • Øystein Haugen
    • 3
  1. 1.Department of Information SystemsUniversity of HaifaIsrael
  2. 2.Institute for Information Systems & New MediaViennaAustria
  3. 3.SINTEF and Department of InformaticsUniversity of OsloNorway

Personalised recommendations