A Practical Analysis of Oblivious Sorting Algorithms for Secure Multi-party Computation

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8788)

Abstract

Cryptographic secure computing methods like secure multi-party computation, circuit garbling and homomorphic encryption are becoming practical enough to be usable in applications. Such applications need special data-independent sorting algorithms to preserve privacy. In this paper, we describe the design and implementation of four different oblivious sorting algorithms. We improve two earlier designs based on sorting networks and quicksort with the capability of sorting matrices. We also propose two new designs—a naive comparison-based sort with a low round count and an oblivious radix sort algorithm that does not require any private comparisons. For all these algorithms, we present thorough complexity and performance analysis including detailed breakdown of running-time, network and memory usage.

Keywords

privacy algorithms sorting implementation performance analysis secure multi-party computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogdanov, D.: Sharemind: programmable secure computations with practical applications. PhD thesis, University of Tartu (2013)Google Scholar
  2. 2.
    Bogdanov, D., Laud, P., Randmets, J.: Domain-Polymorphic Programming of Privacy-Preserving Applications. In: Proc. of PETShop 2013. ACM Digital Library, pp. 23–26. ACM (2013)Google Scholar
  3. 3.
    Bogdanov, D., Laur, S., Talviste, R.: Oblivious Sorting of Secret-Shared Data. Technical Report T-4-19, Cybernetica (2013), http://research.cyber.ee/
  4. 4.
    Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. International Journal of Information Security 11(6), 403–418 (2012)CrossRefGoogle Scholar
  5. 5.
    Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-preserving aggregation of multi-domain network events and statistics. In: Proc. of USENIX Conference on Security. USENIX Association (2010)Google Scholar
  6. 6.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. of FOCS 2001, pp. 136–145. IEEE Computer Society (2001)Google Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Counting Sort. In: Introduction to Algorithms, ch. 8.2, 2nd edn., pp. 168–170. MIT Press, McGraw-Hill (2001)Google Scholar
  8. 8.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Edmonds, J.: Counting Sort (a Stable Sort). In: How to Think about Algorithms, ch. 5.2, pp. 72–75. Cambridge University Press (2008)Google Scholar
  11. 11.
    Evfimievski, A.V., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: Proc. of KDD 2002, pp. 217–228 (2002)Google Scholar
  12. 12.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC 2009, pp. 169–178. ACM (2009)Google Scholar
  13. 13.
    Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product computation for privacy-preserving data mining. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: An efficient sorting algorithm for practical secure multi-party computation. Cryptology ePrint Archive, Report 2014/121 (2014), http://eprint.iacr.org/
  15. 15.
    Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically Efficient Multi-party Sorting Protocols from Comparison Sort Algorithms. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Hollerith, H.: US395781 (A) - ART OF COMPILING STATISTICS. European Patent Office (1889), http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=395781
  17. 17.
    Jónsson, K.V., Kreitz, G., Uddin, M.: Secure Multi-Party Sorting and Applications. Cryptology ePrint Archive, Report 2011/122 (2011), http://eprint.iacr.org/
  18. 18.
    Knuth, D.E.: The art of computer programming, 2nd edn. Sorting and searching, vol. 3. Addison Wesley Longman Publishing Co., Inc., USA (1998)Google Scholar
  19. 19.
    Laur, S., Willemson, J., Zhang, B.: Round-Efficient Oblivious Database Manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)CrossRefGoogle Scholar
  21. 21.
    Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: Proc. of IEEE S&P 2008, pp. 111–125 (2008)Google Scholar
  22. 22.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Shamir, A.: How to share a secret. Comm. of the ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic protocols for secure two-party sorting, selection, and permuting. In: Proc. of ASIACCS 2010, pp. 226–237. ACM (2010)Google Scholar
  26. 26.
    Zhang, B.: Generic Constant-Round Oblivious Sorting Algorithm for MPC. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 240–256. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.CyberneticaTallinnEstonia
  2. 2.Institute of Computer ScienceUniversity of TartuTartuEstonia

Personalised recommendations