Map Schematization with Circular Arcs

  • Thomas C. van Dijk
  • Arthur van Goethem
  • Jan-Henrik Haunert
  • Wouter Meulemans
  • Bettina Speckmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8728)


We present an algorithm to compute schematic maps with circular arcs. Our algorithm iteratively replaces two consecutive arcs with a single arc to reduce the complexity of the output map and thus to increase its level of abstraction. Our main contribution is a method for replacing arcs that meet at high-degree vertices. This allows us to greatly reduce the output complexity, even for dense networks. We experimentally evaluate the effectiveness of our algorithm in three scenarios: territorial outlines, road networks, and metro maps. For the latter, we combine our approach with an algorithm to more evenly distribute stations. Our experiments show that our algorithm produces high-quality results for territorial outlines and metro maps. However, the lack of caricature (exaggeration of typical features) makes it less useful for road networks.


Road Network Complexity Reduction Virtual Edge Metro Line Correct Topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cabello, S., De Berg, M., Van Kreveld, M.: Schematization of networks. Comp. Geometry: Theory & Appl. 30(3), 223–238 (2005)CrossRefMATHGoogle Scholar
  2. 2.
    De Chiara, D., Del Fatto, V., Laurini, R., Sebillo, M., Vitiello, G.: A chorem-based approach for visually analyzing spatial data. J. of Visual Languages & Computing 22(3), 173–193 (2011)CrossRefGoogle Scholar
  3. 3.
    Merrick, D., Gudmundsson, J.: Path simplification for metro map layout. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 258–269. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Neyer, G.: Line simplification with restricted orientations. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 13–24. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Brunet, R.: La composition des modèles dans l’analyse spatiale. Espace géographique 9(4), 253–265 (1980)CrossRefGoogle Scholar
  6. 6.
    Buchin, K., Meulemans, W., Speckmann, B.: A new method for subdivision simplification with applications to urban-area generalization. In: Proc. 19th ACM SIGSPATIAL GIS, pp. 261–270 (2011)Google Scholar
  7. 7.
    Nöllenburg, M., Wolff, A.: A mixed-integer program for drawing high-quality metro maps. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 321–333. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Stott, J., Rodgers, P., Martinez-Ovando, J., Walker, S.: Automatic metro map layout using multicriteria optimization. IEEE TVCG 17(1), 101–114 (2011)Google Scholar
  9. 9.
    Koffka, K.: Principles of Gestalt psychology. Routledge (2013)Google Scholar
  10. 10.
    Delling, D., Gemsa, A., Nöllenburg, M., Pajor, T.: Path schematization for route sketches. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 285–296. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gemsa, A., Nöllenburg, M., Pajor, T., Rutter, I.: On d-regular schematization of embedded paths. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 260–271. Springer, Heidelberg (2011)Google Scholar
  12. 12.
    Cicerone, S., Cermignani, M.: Fast and simple approach for polygon schematization. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 267–279. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Ti, P., Li, Z.: Generation of schematic network maps with automated detection and enlargement of congested areas. Int. J. of Geographical Information Science 28(3), 521–540 (2014)CrossRefGoogle Scholar
  14. 14.
    Roberts, M., Newton, E., Lagattolla, F., Hughes, S., Hasler, M.: Objective versus subjective measures of Paris metro map usability: Investigating traditional octolinear versus all-curves schematic maps. Int. J. of Human Computer Studies 71, 363–386 (2013)CrossRefGoogle Scholar
  15. 15.
    Reimer, A.W.: Understanding chorematic diagrams: Towards a taxonomy. Cartographic J. 47(4), 330–350 (2010)CrossRefGoogle Scholar
  16. 16.
    Drysdale, R., Rote, G., Sturm, A.: Approximation of an open polygonal curve with a minimum number of circular arcs and biarcs. Comp. Geometry: Theory & Appl. 41(1-2), 31–47 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Heimlich, M., Held, M.: Biarc approximation, simplification and smoothing of polygonal curves by means of Voronoi-based tolerance bands. Int. J. of Comp. Geometry & Appl. 18(3), 221–250 (2008)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    van Goethem, A., Meulemans, W., Reimer, A., Haverkort, H., Speckmann, B.: Topologically safe curved schematisation. Cartographic J. 50(3), 276–285 (2013)CrossRefGoogle Scholar
  19. 19.
    van Goethem, A., Meulemans, W., Speckmann, B., Wood, J.: Exploring curved schematization. In: Proc. 7th IEEE PacificVis., pp. 1–8 (2014)Google Scholar
  20. 20.
    Fink, M., Haverkort, H., Nöllenburg, M., Roberts, M., Schuhmann, J., Wolff, A.: Drawing metro maps using Bézier curves. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 463–474. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Thomson, R., Brooks, R.: Exploiting perceptual grouping for map analysis, understanding and generalization: The case of road and river networks. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 148–157. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Comp. Geometry: Theory & Appl. 37(3), 162–174 (2007)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Merrick, D., Gudmundsson, J.: Increasing the readability of graph drawings with centrality-based scaling. In: Proc. 2006 Asia-Pacific Symp. Info. Vis., pp. 67–76 (2006)Google Scholar
  24. 24.
    van Dijk, T.C., Haunert, J.H.: Interactive focus maps using least-squares optimization. Int. J. of Geographical Information Science (2014), doi:10.1080/13658816.2014.887718Google Scholar
  25. 25.
    Nöllenburg, M.: An improved algorithm for the metro-line crossing minimization problem. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 381–392. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Lecordix, F., Plazanet, C., Lagrange, J.P.: PlaGe: a platform for research in generalization. application to caricature. Geo Informatica 1(2), 161–182 (1996)Google Scholar
  27. 27.
    van Dijk, T.C., Van Goethem, A., Haunert, J.H., Meulemans, W., Speckmann, B.: Accentuating focus map via partial schematization. In: Proc. 21st ACM SIGSPATIAL GIS, pp. 438–441 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas C. van Dijk
    • 1
  • Arthur van Goethem
    • 2
  • Jan-Henrik Haunert
    • 3
  • Wouter Meulemans
    • 2
  • Bettina Speckmann
    • 2
  1. 1.Universität WürzburgWürzburgGermany
  2. 2.Technical University EindhovenEindhovenThe Netherlands
  3. 3.Universität OsnabrückOsnabrückGermany

Personalised recommendations