Advertisement

Orchestrating the Sequential Execution of Tasks by a Heterogeneous Set of Asynchronous Mobile Agents

  • Shashi Shekhar Jha
  • Shivashankar B. Nair
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8732)

Abstract

Coordinated execution of a sequence of tasks by a group of heterogeneous agents possessing different capabilities is known to be a complex problem. Researchers have looked upon nature to capture the mechanisms embedded within the highly distributed swarms of insects to coordinate the execution of tasks by multiple entities. Stigmergy based interactions forms the key that regulates various processes within such swarms. This paper describes a technique by which a heterogeneous set of asynchronous mobile agents comprising a swarm commence the execution of their assigned tasks by coordinating amongst each-other using stigmergy. These mobile agents make use of stimulations from the environment to activate the execution of a sequence of tasks on a network of nodes in a near synchronous manner. A stigmergic cloning controller facilitates the cloning of on-demand agents to provide for parallel executions. The agents also inherently exhibit self-healing. The paper also describes results obtained from emulations performed over a LAN which proves the practical viability of the proposed approach.

Keywords

Synchronization Swarm Stigmergy Mobile Agents Stimulations Population Control Response Threshold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From natural to artificial systems, vol. (1). OUP USA (1999)Google Scholar
  2. 2.
    Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: Fixed response thresholds and the regulation of division of labor in insect societies. Bulletin of Mathematical Biology 60(4), 753–807 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: The synchronization of recruitment-based activities in ants. Biosystems 45(3), 195–211 (1998)CrossRefGoogle Scholar
  4. 4.
    Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-organisation in biological systems. Princeton University Press (2001)Google Scholar
  5. 5.
    Chess, D., Harrison, C., Kershenbaum, A.: Mobile agents: Are they a good idea? In: Tschudin, C.F., Vitek, J. (eds.) MOS 1996. LNCS, vol. 1222, pp. 25–45. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Deneubourg, J.: Application de l’ordre par fluctuations a la description de certaines étapes de la construction du nid chez les Termites. Insectes Sociaux 24, 117–130 (1977)CrossRefGoogle Scholar
  7. 7.
    Deneubourg, J.L., Goss, S., Pasteels, J.M., Fresneau, D., Lachaud, J.P.: Self-organization mechanisms in ant societies (II): Learning in foraging and division of labor. From individual to collective behavior in social insects, p. 177 (1987)Google Scholar
  8. 8.
    Franks, N.R., Deneubourg, J.L., et al.: Self-organizing nest construction in ants: individual worker behaviour and the nest’s dynamics. Animal Behaviour 54(4), 779–796 (1997)CrossRefGoogle Scholar
  9. 9.
    Godfrey, W.W., Jha, S.S., Nair, S.B.: On Stigmergically Controlling a Population of Heterogeneous Mobile Agents Using Cloning Resource. In: Nguyen, N.-T. (ed.) Transactions on Computational Collective Intelligence XIV. LNCS, vol. 8615, 203 p. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Godfrey, W.W., Nair, S.B.: An immune system based multi-robot mobile agent network. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 424–433. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Godfrey, W.W., Nair, S.B.: A Mobile Agent Cloning Controller for Servicing Networked Robots. In: Proceedings of 2011 International Conference on Future Information Technology, IPCSIT 2011, pp. 81–85. IACSIT Press (2011)Google Scholar
  12. 12.
    Grassé, P.: The automatic regulations of collective behavior of social insect and “stigmergy”. Journal de Psychologie Normale et Pathologique 57, 1–10 (1959)Google Scholar
  13. 13.
    Hadeli, Valckenaers, P., Kollingbaum, M., Brussel, H.V.: Multi-agent coordination and control using stigmergy. Computers in Industry 53(1), 75–96 (2004)Google Scholar
  14. 14.
    Holvoet, T., Valckenaers, P.: Exploiting the Environment for Coordinating Agent Intentions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 51–66. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Jha, S.S., Godfrey, W.W., Nair, S.B.: Stigermgy-based Synchronization of a Sequence of Tasks in a Network of Asynchronous Nodes. Cybernetics and Systems 45(5), 373–406 (2014)CrossRefGoogle Scholar
  16. 16.
    Jha, S.S., Shrivastava, K., Nair, S.B.: On Emulating Real-World Distributed Intelligence Using Mobile Agent Based Localized Idiotypic Networks. In: Prasath, R., Kathirvalavakumar, T. (eds.) MIKE 2013. LNCS, vol. 8284, pp. 487–498. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Jones, C., Mataric, M.J.: Adaptive division of labor in large-scale minimalist multi-robot systems. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 2, pp. 1969–1974. IEEE (2003)Google Scholar
  18. 18.
    Kambayashi, Y., Tsujimura, Y., Yamachi, H., Takimoto, M., Yamamoto, H.: Design of a Multi-Robot System Using Mobile Agents with Ant Colony Clustering. In: Proceedings of 42nd Hawaii International Conference on System Sciences, HICSS 2009, pp. 1–10 (January 2009)Google Scholar
  19. 19.
    Karsai, I., Pénzes, Z.: Comb Building in Social Wasps: Self-organization and Stigmergic Script. Journal of Theoretical Biology 161(4), 505–525 (1993), http://www.sciencedirect.com/science/article/pii/S0022519383710702 CrossRefGoogle Scholar
  20. 20.
    Krieger, M.J., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799), 992–995 (2000)CrossRefGoogle Scholar
  21. 21.
    Kugler, P.N., Shaw, R.E., Vincente, K.J., Kinsella-Shaw, J.: Inquiry into intentional systems I: Issues in ecological physics. Psychological Research 52, 98–121 (1990)CrossRefGoogle Scholar
  22. 22.
    Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 1(1), 4–25 (2006)CrossRefGoogle Scholar
  23. 23.
    Li, L., Martinoli, A., Abu-Mostafa, Y.: Emergent Specialization in Swarm Systems. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 261–266. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Liu, W., Winfield, A.F., Sa, J., Chen, J., Dou, L.: Towards energy optimization: Emergent task allocation in a swarm of foraging robots. Adaptive Behavior 15(3), 289–305 (2007)CrossRefGoogle Scholar
  25. 25.
    Matani, J., Nair, S.B.: Typhon-A Mobile Agents Framework for Real World Emulation in Prolog. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds.) MIWAI 2011. LNCS, vol. 7080, pp. 261–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Minar, N., Kramer, K.H., Maes, P.: Cooperating mobile agents for mapping networks. In: Proceedings of the First Hungarian National Conference on Agent Based Computing, pp. 34–41 (1998)Google Scholar
  27. 27.
    Murciano, A., del Millán, J.R., Zamora, J.: Specialization in multi-agent systems through learning. Biological Cybernetics 76(5), 375–382 (1997), http://dx.doi.org/10.1007/s004220050351 CrossRefzbMATHGoogle Scholar
  28. 28.
    Outtagarts, A.: Mobile Agent-based Applications: A Survey. International Journal of Computer Science and Network Security 9, 331–339 (2009)Google Scholar
  29. 29.
    Resnick, M.: Turtles, termites, and traffic jams: Explorations in massively parallel microworlds. The MIT Press (1997)Google Scholar
  30. 30.
    Theraulaz, G., Bonabeau, E.: Modelling the collective building of complex architectures in social insects with lattice swarms. Journal of Theoretical Biology 177, 381–400 (1995)CrossRefGoogle Scholar
  31. 31.
    Van Dyke Parunak, H., Brueckner, S.: Entropy and Self-organization in Multi-agent Systems. In: Proceedings of the Fifth International Conference on Autonomous Agents, AGENTS 2001, pp. 124–130. ACM, New York (2001)CrossRefGoogle Scholar
  32. 32.
    Werfel, J., Bar-Yam, Y., Nagpal, R.: Building patterned structures with robot swarms. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 1495–1502. Morgan Kaufmann Publishers Inc., San Francisco (2005)Google Scholar
  33. 33.
    Weyns, D., Holvoet, T.: Regional Synchronization for Simultaneous Actions in Situated Multi-agent Systems. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 497–510. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environments for Multiagent Systems State-of-the-Art and Research Challenges. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 1–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shashi Shekhar Jha
    • 1
  • Shivashankar B. Nair
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology GuwahatiIndia

Personalised recommendations