Simplified Simultaneous Perturbation Stochastic Approximation for the Optimization of Free Decoding Parameters

  • Aleksei Romanenko
  • Alexander Zatvornitsky
  • Ivan Medennikov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8773)

Abstract

This paper deals with automatic optimization of free decoding parameters. We propose using a Simplified Simultaneous Perturbation Stochastic Approximation algorithm to optimize these parameters. This method provides a significant reduction in computational and labor costs. We also demonstrate that the proposed method successfully copes with the optimization of parameters for a specific target real-time factor, for all the databases we tested.

Keywords

Simplified Simultaneous Perturbation Stochastic Approximation SPSA decoding parameter real-time factor RTF speech recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stein, D., Schwenninger, J., Stadtschnitzer, M.: Simultaneous perturbation stochastic approximation for automatic speech recognition. In: Proc. of the INTERSPEECH, Lyon, France, August 25-29, pp. 622–626 (2013)Google Scholar
  2. 2.
    El Hannani, A., Hain, T.: Automatic optimization of speech decoder parameters. Signal Processing Letters 17(1), 95–98 (2010), doi:10.1109/LSP.2009.2033967CrossRefGoogle Scholar
  3. 3.
    Mak, B., Ko, T.: Automatic estimation of decoding parameters using large-margin iterative linear programming. In: Proc. of the INTERSPEECH, Brighton, United Kingdom, September 6-10, pp. 1219–1222 (2009)Google Scholar
  4. 4.
    Kacur, J., Korosi, J.: An accuracy optimization of a dialog ASR system utilizing evolutional strategies. In: Proc. of the ISPA, Istanbul, Turkey, September 27-29, pp. 180–184 (2007)Google Scholar
  5. 5.
    Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control 37(3), 332–341 (1992), doi:10.1109/9.119632MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Spall, J.C.: Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Transactions on Aerospace and Electronic Systems 34(3), 817–823 (1998), doi:10.1109/7.705889CrossRefGoogle Scholar
  7. 7.
    Kiefer, J., Wolfowitz, J.: Stochastic Estimation of the Maximum of a Regression Function. Ann. Math. Stat. 23(3), 462–466 (1952)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Yue, X.: Improved Simultaneous Perturbation Stochastic Approximation and Its Application in Reinforcement Learning. In: Proc. of the International Conference on Computer Science and Software Engineering, Wuhan, Hubei, December 12-14, vol. 1, pp. 329–332 (2008)Google Scholar
  9. 9.
    Korenevsky, M., Bulusheva, A., Levin, K.: Unknown Words Modeling in Training and Using Language Models for Russian LVCSR System. In: Proc. of the SPECOM, Kazan, Russia, September 27-30, pp. 144–150 (2011)Google Scholar
  10. 10.
    Yurkov, P., Korenevsky, M., Levin, K.: An Improvement of robustness to speech loudness change for an ASR system based on LC-RC features. In: Proc. of the SPECOM, Kazan, Russia, September 27-30, pp. 62–66 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aleksei Romanenko
    • 1
  • Alexander Zatvornitsky
    • 2
  • Ivan Medennikov
    • 1
    • 3
  1. 1.ITMO UniversitySaint-PetersburgRussia
  2. 2.Speech Technology CenterSaint-PetersburgRussia
  3. 3.Saint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations