Proportional-Integral-Derivative Control of Automatic Speech Recognition Speed

  • Alexander Zatvornitsky
  • Aleksei Romanenko
  • Maxim Korenevsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8773)

Abstract

We propose a technique for regulating LVCSR decoding speed based on a proportional-integral-derivative (PID) model that is widely used in automatic control theory. Our experiments show that such a controller can maintain a given decoding speed level despite computer performance fluctuations, difficult acoustic conditions, or speech material that is out of the scope of the language model, without notable deterioration in overall recognition quality.

Keywords

Speech recognition decoding pruning recognition time control PID controller 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steinbiss, V., Tran, B.-H., Ney, H.: Improvements in Beam Search. In: Proc. of the ICSLP, Yokohama, Japan, September 18-22, pp. 2143–2146 (1994)Google Scholar
  2. 2.
    Nolden, D., Schluter, R., Ney, H.: Extended search space pruning in LVCSR. In: Proc. of the ICASSP, Kyoto, Japan, March 25-30, pp. 4429–4432 (2012)Google Scholar
  3. 3.
    Hamme, H., Aellen, F.: An Adaptive-Beam Pruning Technique for Continuous Speech Recognition. In: Proc. of the ICSLP, Philadelphia, Pennsylvania, October 3-6, pp. 2083–2086 (1996)Google Scholar
  4. 4.
    Zhang, D., Du, L.: Dynamic Beam Pruning Strategy Using Adaptive Control. In: Proc. of the INTERSPEECH, Jeju Island, Korea, October 4-8, pp. 285–288 (2004)Google Scholar
  5. 5.
    Fabian, T., Lieb, R., Ruske, G., Thomae, M.: A Confidence-Guided Dynamic Pruning Approach-Utilization of Confidence Measurement in Speech Recognition. In: Proc. of the INTERSPEECH, Lisbon, Portugal, September 4-8, pp. 585–588 (2005)Google Scholar
  6. 6.
    Chan, A., Mosur, R., Rudnicky, A., Sherwani, J.: Four-layer Categorization Scheme of Fast GMM Computation Techniques in Large Vocabulary Continuous Speech Recognition Systems. In: Proc. of the ICSLP, Jeju Island, Korea, October 4-8, pp. 689–692 (2004)Google Scholar
  7. 7.
    Dixon, P., Oonishi, T., Furui, S.: Harnessing graphics processors for the fast computation of acoustic likelihoods in speech recognition. Computer Speech & Language 23(4), 510–526 (2009)CrossRefGoogle Scholar
  8. 8.
    Lei, X., Senior, A., Gruenstein, A., Sorensen, J.: Accurate and Compact Large Vocabulary Speech Recognition on Mobile Devices. In: Proc. of the INTERSPEECH, Lyon, France, August 25-29, pp. 662–665 (2013)Google Scholar
  9. 9.
    Ang, K., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology 13(4), 559–576 (2005)CrossRefGoogle Scholar
  10. 10.
    Young, S., Russell, N., Thornton, J.: Token Passing: a Conceptual Model for Connected Speech Recognition Systems. CUED Technical Report F INFENG/TR38. Cambridge University, Cambridge (1989)Google Scholar
  11. 11.
    Saon, G., Povey, D., Zweig, G.: Anatomy of an extremely fast LVCSR decoder. In: Proc. of the INTERSPEECH, Lisbon, Portugal, September 4-8, pp. 549–552 (2005)Google Scholar
  12. 12.
    Li, Y., Ang, K., Chong, G.: Patents, software and hardware for PID control: an overview and analysis of the current art. IEEE Control Systems Magazine 26(1), 42–54 (2006)CrossRefGoogle Scholar
  13. 13.
    Dixon, P., Caseiro, D., Oonishi, T., Furui, S.: The Titech large vocabulary WFST speech recognition system. In: Proc. of the ASRU, Kyoto, Japan, December 9-13, pp. 443–448 (2007)Google Scholar
  14. 14.
    Novak, J., Minematsu, N., Hirose, K.: Open Source WFST Tools for LVCSR Cascade Development. In: Proc. of the FSMNLP, Bois, France, July 12-16, pp. 65–73 (2011)Google Scholar
  15. 15.
    Allauzen, C., Mohri, M., Riley, M., Roark, B.: A Generalized Construction of Integrated Speech Recognition Transducers. In: Proc. of the ICASSP, Montreal, Canada, May 17-21, vol. 1, pp. 761–764 (2004)Google Scholar
  16. 16.
    Mohri, M., Pereira, F., Riley, M.: Weighted Finite-State Transducers in Speech Recognition. Computer Speech and Language 16(1), 69–88 (2002)CrossRefGoogle Scholar
  17. 17.
    Schwarz, P.: Phoneme recognition based on long temporal context (PhD thesis). Faculty of Information Technology BUT, Brno (2008)Google Scholar
  18. 18.
    Yurkov, P., Korenevsky, M., Levin, K.: An Improvement of robustness to speech loudness change for an ASR system based on LC-RC features. In: Proc. of the SPECOM, Kazan, Russia, September 27-30, pp. 62–66 (2011)Google Scholar
  19. 19.
    Tomashenko, N.A., Khokhlov, Y.Y.: Fast Algorithm for Automatic Alignment of Speech and Imperfect Text Data. In: Železný, M., Habernal, I., Ronzhin, A. (eds.) SPECOM 2013. LNCS, vol. 8113, pp. 146–153. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander Zatvornitsky
    • 1
  • Aleksei Romanenko
    • 2
  • Maxim Korenevsky
    • 1
  1. 1.Speech Technology CenterSaint-PetersburgRussia
  2. 2.ITMO UniversitySaint-PetersburgRussia

Personalised recommendations