Advertisement

Evaluation of Wearable Sensor Tag Data Segmentation Approaches for Real Time Activity Classification in Elderly

  • Roberto Luis Shinmoto TorresEmail author
  • Damith C. Ranasinghe
  • Qinfeng Shi
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 131)

Abstract

The development of human activity monitoring has allowed the creation of multiple applications, among them is the recognition of high falls risk activities of older people for the mitigation of falls occurrences. In this study, we apply a graphical model based classification technique (conditional random field) to evaluate various sliding window based techniques for the real time prediction of activities in older subjects wearing a passive (batteryless) sensor enabled RFID tag. The system achieved maximum overall real time activity prediction accuracy of \(95\,\%\) using a time weighted windowing technique to aggregate contextual information to input sensor data.

Keywords

Conditional random fields RFID Feature extraction 

References

  1. 1.
    Becker, C., Rapp, K.: Fall prevention in nursing homes. Clin. Geriatr. Med. 26(4), 693–704 (2010)CrossRefGoogle Scholar
  2. 2.
    Györbíró, N., Fábián, A., Hományi, G.: An activity recognition system for mobile phones. Mob. Netw. Appl. 14(1), 82–91 (2009)CrossRefGoogle Scholar
  3. 3.
    Jeffery, S., Franklin, M., Garofalakis, M.: An adaptive rfid middleware for supporting metaphysical data independence. VLDB J. 17(2), 265–289 (2008)CrossRefGoogle Scholar
  4. 4.
    Karantonis, D., Narayanan, M., Mathie, M., Lovell, N., Celler, B.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 10(1), 156–167 (2006)CrossRefGoogle Scholar
  5. 5.
    Kaufmann, T., Ranasinghe, D.C., Zhou, M., Fumeaux, C.: Wearable quarter-wave microstrip antenna for passive UHF RFID applications. Int. J. Antennas Propag. (2013)Google Scholar
  6. 6.
    Kern, N., Schiele, B., Schmidt, A.: Recognizing context for annotating a live life recording. Pers. Ubiquit. Comput. 11(4), 251–263 (2007)CrossRefGoogle Scholar
  7. 7.
    Krishnan, N.C., et al.: Activity recognition on streaming sensor data. Pervasive Mob. Comput. 10, 138–154 (2014)CrossRefGoogle Scholar
  8. 8.
    Lee, M.W., Khan, A., Kim, J.H., Cho, Y.S., Kim, T.S.: A single tri-axial accelerometer-based real-time personal life log system capable of activity classification and exercise information generation. In: 32nd Annual International Conference IEEE Engineering in Medicine and Biology Society, pp. 1390–1393 (2010)Google Scholar
  9. 9.
    Lee, Y.-S., Cho, S.-B.: Activity recognition using hierarchical hidden markov models on a smartphone with 3D accelerometer. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 460–467. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Lu, C.H., Fu, L.C.: Robust location-aware activity recognition using wireless sensor network in an attentive home. IEEE Trans. Autom. Sci. Eng. 6(4), 598–609 (2009)CrossRefGoogle Scholar
  11. 11.
    Messing, R., Pal, C., Kautz, H.: Activity recognition using the velocity histories of tracked keypoints. In: IEEE 12th International Conference on Computer Vision, pp. 104–111 (2009)Google Scholar
  12. 12.
    Oliver, D.: Prevention of falls in hospital inpatients. agendas for research and practice. Age Ageing 33(4), 328–330 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ranasinghe, D.C., Shinmoto Torres, R.L., Hill, K.D., Visvanathan, R.: Low cost and batteryless sensor-enabled radio frequency identification tag based approaches to identify patient bed entry and exit posture transitions. Gait & Posture (2013)Google Scholar
  14. 14.
    Robinovitch, S.N., Feldman, F., Yang, Y., Schonnop, R., Lueng, P.M., Sarraf, T., Sims-Gould, J., Loughin, M.: Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. The Lancet 381(9860), 47–54 (2012)CrossRefGoogle Scholar
  15. 15.
    Shinmoto Torres, R.L., Ranasinghe, D.C., Shi, Q., Sample, A.P.: Sensor enabled wearable rfid technology for mitigating the risk of falls near beds. In: 2013 IEEE International Conference on RFID, pp. 191–198 (2013)Google Scholar
  16. 16.
    Sutton, C., McCallum, A.: An introduction to conditional random fields. Found. Trends Mach. Learn. 4(4), 267–373 (2012)CrossRefGoogle Scholar
  17. 17.
    Wang, L., Gu, T., Tao, X., Lu, J.: A hierarchical approach to real-time activity recognition in body sensor networks. Pervasive Mob. Comput. 8(1), 115–130 (2012)CrossRefGoogle Scholar
  18. 18.
    Xia, L., Chen, C.C., Aggarwal, J.: Human detection using depth information by kinect. In: 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 15–22 (2011)Google Scholar

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014

Authors and Affiliations

  • Roberto Luis Shinmoto Torres
    • 1
    Email author
  • Damith C. Ranasinghe
    • 1
  • Qinfeng Shi
    • 1
  1. 1.Auto-ID Lab, School of Computer ScienceThe University of Adelaide South AustraliaAdelaideAustralia

Personalised recommendations