Model-Driven Public Sensing in Sparse Networks

  • Damian Philipp
  • Jarosław Stachowiak
  • Frank Dürr
  • Kurt Rothermel
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 131)

Abstract

Public Sensing (PS) is a recent trend for building large-scale sensor data acquisition systems using commodity smartphones. Limiting the energy drain on participating devices is a major challenge for PS, as otherwise people will stop sharing their resources with the PS system. Existing solutions for limiting the energy drain through model-driven optimizations are limited to dense networks where there is a high probability for every point of interest to be covered by a smartphone. In this work, we present an adaptive model-driven PS system that deals with both dense and sparse networks. Our evaluations show that this approach improves data quality by up to 41 percentage points while enabling the system to run with a greatly reduced number of participating smartphones. Furthermore, we can save up to 81 % of energy for communication and sensing while providing data matching an error bound of \(1\,^\circ \)C up to 96 % of the time.

References

  1. 1.
    Baier, P., Weinschrott, H., Dürr, F., Rothermel, K.: MapCorrect: automatic correction and validation of road maps using public sensing. In: 36th Annual IEEE Conference on Local Computer Networks, Bonn, Germany, October 2011Google Scholar
  2. 2.
    Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consumption in mobile phones: a measurement study and implications for network applications. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, pp. 280–293. ACM, New York (2009)Google Scholar
  3. 3.
    Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A., Lu, H., Zheng, X., Musolesi, M., Fodor, K., Ahn, G.-S.: The rise of people-centric sensing. IEEE Internet Comput. 12(4), 12–21 (2008)CrossRefGoogle Scholar
  4. 4.
    Cressie, N.A.C.: Statistics for Spatial Data. Wiley-Interscience, New York (1993)Google Scholar
  5. 5.
    Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-driven data acquisition in sensor networks. In: Proceedings of the 30th International Conference on Very Large Databases, VLDB Endowment, pp. 588–599 (2004)Google Scholar
  6. 6.
    Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakrishnan, H., Madden, S.: Cartel: a distributed mobile sensor computing system. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 125–138. ACM, New York (2006)Google Scholar
  7. 7.
    Kanjo, E., Benford, S., Paxton, M., Chamberlain, A., Fraser, D.S., Woodgate, D., Crellin, D., Woolard, A.: MobGeoSen: facilitating personal geosensor data collection and visualization using mobile phones. Pers. Ubiquit. Comput. 12, 599–607 (2008)CrossRefGoogle Scholar
  8. 8.
    Krause, A.: Optimizing Sensing - Theory and Applications. Ph.D. thesis, Carnegie Mellon University (2008)Google Scholar
  9. 9.
    Lu, H., Lane, N.D., Eisenman, S.B., Campbell, A.T.: Bubble-sensing: binding sensing tasks to the physical world. Pervasive Mob. Comput. 6(1), 58–71 (2009)CrossRefGoogle Scholar
  10. 10.
    Mendez, D., Labrador, M., Ramachandran, K.: Data interpolation for participatory sensing systems. Pervasive Mob. Comput. 9(1), 132–148 (2013)CrossRefGoogle Scholar
  11. 11.
    Nadeau, D., Brutsaert, W., Parlange, M., Bou-Zeid, E., Barrenetxea, G., Couach, O., Boldi, M.-O., Selker, J., Vetterli, M.: Estimation of urban sensible heat flux using a dense wireless network of observations. Environ. Fluid Mech. 9, 635–653 (2009)CrossRefGoogle Scholar
  12. 12.
    Philipp, D., Dürr, F., Rothermel, K.: A sensor network abstraction for flexible public sensing systems. In: Proceedings of the 8th International IEEE Conference on Mobile Ad-hoc and Sensor Systems, pp. 460–469, October 2011Google Scholar
  13. 13.
    Philipp, D., Stachowiak, J., Alt, P., Dürr, F., Rothermel. K.: DrOPS: model-driven optimization for public sensing systems. In: IEEE International Conference on Pervasive Computing and Communications, San Diego, CA, USA, March 2013, pp. 185–192. IEEE Computer Society (2013)Google Scholar
  14. 14.
    Priyantha, B., Lymberopoulos, D., Liu, J.: Eers: Energy efficient responsive sleeping on mobile phones. In: International Workshop on Sensing for App Phones, Zurich, Switzerland (2010)Google Scholar
  15. 15.
    Reddy, S., Estrin, D., Srivastava, M.: Recruitment framework for participatory sensing data collections. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 138–155. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Weinschrott, H., Dürr, F., Rothermel, K.: Efficient capturing of environmental data with mobile RFID readers. In: Proceedings of the 10th International Conference on Mobile Data Management, Washington, DC, USA, 2009, pp. 41–51. IEEE Computer Society (2009)Google Scholar
  17. 17.
    Weinschrott, H., Dürr, F., Rothermel, K.: StreamShaper: coordination algorithms for participatory mobile urban sensing. In: Proceedings of the 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems, San Francisco, CA, USA, November 2010. IEEE (2010)Google Scholar

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014

Authors and Affiliations

  • Damian Philipp
    • 1
  • Jarosław Stachowiak
    • 1
  • Frank Dürr
    • 1
  • Kurt Rothermel
    • 1
  1. 1.Institute of Parallel and Distributed SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations