Incremental SAT-Based Method with Native Boolean Cardinality Handling for the Hamiltonian Cycle Problem

  • Takehide Soh
  • Daniel Le Berre
  • Stéphanie Roussel
  • Mutsunori Banbara
  • Naoyuki Tamura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8761)


The Hamiltonian cycle problem (HCP) is the problem of finding a spanning cycle in a given graph. HCP is NP-complete and has been known as an important problem due to its close relationship to the travelling salesman problem (TSP), which can be seen as an optimization variant of finding a minimum cost cycle. In a different viewpoint, HCP is a special case of TSP. In this paper, we propose an incremental SAT-based method for solving HCP. The number of clauses needed for a CNF encoding of HCP often prevents SAT-based methods from being scalable. Our method reduces that number of clauses by relaxing some constraints and by handling specifically cardinality constraints. Our approach has been implemented on top of the SAT solver Sat4j using Scarab. An experimental evaluation is carried out on several benchmark sets and compares our incremental SAT-based method against an existing eager SAT-based method and specialized methods for HCP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Stuckey, P.J.: To encode or to propagate? The best choice for each constraint in SAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 97–106. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo boolean constraints to SAT. Journal on Satisfiability, Boolean Modeling and Computation 2(1-4), 191–200 (2006)zbMATHGoogle Scholar
  7. 7.
    Bryant, R.E., Velev, M.N.: Boolean satisfiability with transitivity constraints. ACM Trans. Comput. Log. 3(4), 604–627 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Carpeneto, G., Toth, P.: Some new branching and bounding criteria for the asymmetric travelling salesman problem. Management Science 26(7), 736–743 (1980)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Dvorák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)CrossRefGoogle Scholar
  11. 11.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Eshragh, A., Filar, J.A., Haythorpe, M.: A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem. Annals OR 189(1), 103–125 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Frisch, A.M., Giannaros, P.A.: SAT encodings of the at-most-k constraint: Some old, some new, some fast, some slow. In: Proceedings of the 9th International Workshop on Constraint Modelling and Reformulation, ModRef 2010 (2010)Google Scholar
  14. 14.
    Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama, A.: Lynx: A programmatic SAT solver for the rna-folding problem. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 143–156. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Gould, R.J.: Advances on the Hamiltonian problem - a survey. Graphs and Combinatorics 19(1), 7–52 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gould, R.J.: Recent advances on the Hamiltonian problem: Survey III. Graphs and Combinatorics 30(1), 1–46 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hnich, B., Walsh, T., Smith, B.M.: Dual modelling of permutation and injection problems. J. Artif. Intell. Res (JAIR) 21, 357–391 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hoos, H.H.: SAT-encodings, search space structure, and local search performance. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 296–303 (1999)Google Scholar
  20. 20.
    Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems. In: Proceedings of the IFIP 13th World Computer Congress, pp. 253–258 (1994)Google Scholar
  21. 21.
    Jäger, G., Zhang, W.: An effective algorithm for and phase transitions of the directed Hamiltonian cycle problem. J. Artif. Intell. Res. (JAIR) 39, 663–687 (2010)zbMATHGoogle Scholar
  22. 22.
    Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction refinement algorithm for propositional circumscription. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 195–207. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving qbf with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  25. 25.
    Kroning, D., Ouaknine, J., Seshia, S.A., Strichman, O.: Abstraction-based satisfiability solving of presburger arithmetic. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 308–320. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Laporte, G.: The traveling salesman problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59(2), 231–247 (1992)CrossRefzbMATHGoogle Scholar
  27. 27.
    Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)Google Scholar
  28. 28.
    Prestwich, S.D.: SAT problems with chains of dependent variables. Discrete Applied Mathematics 130(2), 329–350 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Soh, T., Tamura, N., Banbara, M.: Scarab: A rapid prototyping tool for SAT-based constraint programming systems. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 429–436. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  32. 32.
    Velev, M.N., Gao, P.: Efficient SAT techniques for relative encoding of permutations with constraints. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 517–527. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Takehide Soh
    • 1
  • Daniel Le Berre
    • 2
  • Stéphanie Roussel
    • 2
  • Mutsunori Banbara
    • 1
  • Naoyuki Tamura
    • 1
  1. 1.Kobe UniversityKobeJapan
  2. 2.CNRS - Université d’ArtoisLensFrance

Personalised recommendations