Advertisement

A Translation-Based Approach for Revision of Argumentation Frameworks

  • Sylvie Coste-Marquis
  • Sébastien Konieczny
  • Jean-Guy Mailly
  • Pierre Marquis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8761)

Abstract

In this paper, we investigate the revision issue for Dung argumentation frameworks. The main idea is that such frameworks can be translated into propositional formulae, allowing the use of propositional revision operators to perform a rational minimal change. Our translation-based approach to revising argumentation frameworks can take advantage of any propositional revision operator ∘. Via a translation, each propositional operator ∘ can be associated with some revision operators ⋆ suited to argumentation frameworks. Some rationality postulates for the ⋆ operators are presented. If the revision formulae are restricted to formulae about acceptance statuses, some ⋆ operators satisfy these postulates provided that the corresponding ∘ operator is AGM.

Keywords

Belief Revision Acceptance Status Propositional Formula Argumentation Framework Revision Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baumann, R.: What does it take to enforce an argument? minimal change in abstract argumentation. In: Proceedings of the European Conference on Artificial Intelligence (ECAI 2012), pp. 127–132 (2012)Google Scholar
  3. 3.
    Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonicity results. In: Proceedings of the Third International Conference on Computational Models of Argument (COMMA 2010), pp. 75–186 (2010)Google Scholar
  4. 4.
    Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR 2004), pp. 59–64 (2004)Google Scholar
  5. 5.
    Besnard, P., Doutre, S., Herzig, A.: Encoding Argument Graphs in Logic. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part II. CCIS, vol. 443, pp. 345–354. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Bisquert, P., Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Change in argumentation systems: Exploring the interest of removing an argument. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 275–288. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Bisquert, P., Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Enforcement in argumentation is a kind of update. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078, pp. 30–43. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single extensions: Abstraction principles and the grounded extension. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 107–118. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single extensions: attack refinement and the grounded extension. In: Proceedings of the International Conference on Autonomous Agents and Multiagents Systems (AAMAS 2009), pp. 1213–1214 (2009)Google Scholar
  10. 10.
    Booth, R., Kaci, S., Rienstra, T., van der Torre, L.: A logical theory about dynamics in abstract argumentation. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078, pp. 148–161. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.C.: Change in abstract argumentation frameworks: Adding an argument. Journal of Artificial Intelligence Research 38, 49–84 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cojan, J., Lieber, J.: Belief revision-based case-based reasoning. In: Richard, G. (ed.) ECAI 2012 Workshop Similarity and Analogy-Based Methods in AI, Montpellier, France, pp. 33–39 (2012)Google Scholar
  13. 13.
    Coste-Marquis, S., Konieczny, S., Mailly, J.G., Marquis, P.: On the revision of argumentation systems: Minimal change of arguments statuses. In: 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), Vienna, July 2014 (to appear)Google Scholar
  14. 14.
    Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary report. In: Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI 1988), pp. 475–479 (1988)Google Scholar
  15. 15.
    Doutre, S., Herzig, A., Perrussel, L.: A dynamic logic framework for abstract argumentation. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), pp. 62–71 (2014)Google Scholar
  16. 16.
    Doutre, S., Perrussel, L.: On Enforcing a Constraint in Argumentation. In: 11th European Workshop on Multi-Agent Systems, EUMAS 2013, Toulouse (2013)Google Scholar
  17. 17.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artificial Intelligence 77(2), 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gabbay, D., Rodrigues, O., Russo, A.: Revision by translation. In: Proceedings of the Seventh International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 1998). Information, Uncertainty and Fusion, pp. 3–32 (1998)Google Scholar
  19. 19.
    Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17, 157–170 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29(2), 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52, 263–294 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nieves, J., Osorio, M., Corts, U.: Inferring preferred extensions by minimal models. In: Workshop on Argumentation and Non-Monotonic Reasoning, Workshop at Logic Programming and Non-Monotonic Reasonning 2007 (LPNMR 2007), pp. 114–124 (2007)Google Scholar
  23. 23.
    Nofal, S., Atkinson, K., Dunne, P.: Algorithms for decision problems in argument systems under preferred semantics. Artificial Intelligence 207, 23–51 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sylvie Coste-Marquis
    • 1
  • Sébastien Konieczny
    • 1
  • Jean-Guy Mailly
    • 1
  • Pierre Marquis
    • 1
  1. 1.CRIL,Université d’Artois – CNRSLensFrance

Personalised recommendations