Advertisement

Query Answering over Description Logic Ontologies

  • Diego Calvanese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8761)

Abstract

Description Logics (DLs) provide the formal foundation for ontology languages, and they have been advocated as formalisms for modeling the domain of interest in various settings, including the Semantic Web, data and information integration, and ontology-based data access. An important requirement there is the ability to answer complex database-like queries, while taking into account both extensional and intensional domain knowledge. The task of answering queries has been investigated intensively in the last years for a variety of DLs, and considering both data complexity, i.e., the complexity measured in the size of the extensional information only, and combined complexity. On the one hand, it has been shown to be in general (exponentially) more difficult than the standard reasoning tasks of concept satisfiability and subsumption; on the other hand a broad range of techniques have been developed. We overview here some of the key techniques developed in the last years for query answering over DL ontologies, ranging from rewriting based approaches for lightweight DLs, to tableaux algorithms, and techniques based on automata on infinite trees for very expressive DLs. The associated results, accompanied by matching lower bounds, have contributed to shaping the computational complexity picture for ontology-based query answering.

Keywords

Regular Expression Description Logic Conjunctive Query Tree Automaton Query Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann (2000)Google Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co. (1995)Google Scholar
  3. 3.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. of Artificial Intelligence Research 36, 1–69 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)Google Scholar
  5. 5.
    Baader, F., Sattler, U.: Expressive number restrictions in description logics. J. of Logic and Computation 9(3), 319–350 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baader, F., Sattler, U.: Tableau algorithms for description logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 1–18. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Bao, J., et al.: OWL 2 Web Ontology Language document overview, W3C Recommendation, World Wide Web Consortium, 2nd edn. (December 2012), http://www.w3.org/TR/owl2-overview/
  8. 8.
    Bienvenu, M., Calvanese, D., Ortiz, M., Simkus, M.: Nested regular path queries in description logics. In: Proc. of the 14th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press (2014)Google Scholar
  9. 9.
    Bienvenu, M., Ortiz, M., Simkus, M.: Conjunctive regular path queries in lightweight description logics. In: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence, IJCAI 2013 (2013)Google Scholar
  10. 10.
    Buneman, P., Davidson, S., Hillebrand, G., Suciu, D.: A query language and optimization technique for unstructured data. In: Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pp. 505–516 (1996)Google Scholar
  11. 11.
    Calvanese, D., De Giacomo, G.: Expressive description logics. In: Baader, et al. (eds.) [4], ch. 5, pp. 178–218Google Scholar
  12. 12.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning 39(3), 385–429 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. Artificial Intelligence 195, 335–360 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 1998), pp. 149–158 (1998)Google Scholar
  16. 16.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of conjunctive regular path queries with inverse. In: Proc. of the 7th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2000), pp. 176–185 (2000)Google Scholar
  17. 17.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Rewriting of regular expressions and regular path queries. J. of Computer and System Sciences 64(3), 443–465 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Reasoning on regular path queries. SIGMOD Record 32(4), 83–92 (2003)CrossRefGoogle Scholar
  19. 19.
    Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive description logics: An automata-theoretic approach. In: Proc. of the 22nd AAAI Conf. on Artificial Intelligence (AAAI 2007), pp. 391–396 (2007)Google Scholar
  20. 20.
    Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive description logics with nominals. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pp. 714–720 (2009)Google Scholar
  21. 21.
    Calvanese, D., Ortiz, M., Eiter, T.: Answering regular path queries in expressive description logics via alternating tree-automata. Information and Computation 237, 12–55 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proc. of the 9th ACM Symp. on Theory of Computing (STOC 1977), pp. 77–90 (1977)Google Scholar
  23. 23.
    Eiter, T., Lutz, C., Ortiz, M., Šimkus, M.: Query answering in description logics with transitive roles. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pp. 759–764 (2009)Google Scholar
  24. 24.
    Eiter, T., Ortiz, M., Simkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-SHIQ plus rules. In: Proc. of the 26th AAAI Conf. on Artificial Intelligence (AAAI 2012). AAAI Press (2012)Google Scholar
  25. 25.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theoretical Computer Science 336(1), 89–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries with regular expressions. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 1998), pp. 139–148 (1998)Google Scholar
  27. 27.
    Glimm, B., Rudolph, S.: Nominals, inverses, counting, and conjunctive queries or: Why infinity is your friend. J. of Artificial Intelligence Research 39, 429–481 (2010)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T., Zakharyaschev, M.: The price of query rewriting in ontology-based data access. Artificial Intelligence 213, 42–59 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). In: Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67 (2006)Google Scholar
  30. 30.
    Horrocks, I., Sattler, U.: A tableau decision procedure for \(\mathcal{SHOIQ}\). J. of Automated Reasoning 39(3), 249–276 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to query answering in DL-Lite. In: Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2010), pp. 247–257 (2010)Google Scholar
  32. 32.
    Krisnadhi, A., Lutz, C.: Data complexity in the \(\mathcal{EL}\) family of description logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 333–347. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Krötzsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for horn description logics. In: Proc. of the 22nd AAAI Conf. on Artificial Intelligence (AAAI 2007), pp. 452–457 (2007)Google Scholar
  34. 34.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pp. 233–246 (2002)Google Scholar
  35. 35.
    Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104(1-2), 165–209 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Lutz, C.: Inverse roles make conjunctive queries hard. In: Proc. of the 20th Int. Workshop on Description Logic (DL 2007). CEUR Electronic Workshop Proceedings, vol. 250, pp. 100–111 (2007), http://ceur-ws.org/
  37. 37.
    Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and general tboxes. J. of Automated Reasoning Special Issue on Automated Reasoning with Analytic Tableaux and Related Methods 38(1-3), 227–259 (2007)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Ortiz, M.: Ontology based query answering: The story so far. In: Proc. of the 7th Alberto Mendelzon Int. Workshop on Foundations of Data Management (AMW 2013). CEUR Electronic Workshop Proceedings, vol. 1087 (2013), http://ceur-ws.org/
  39. 39.
    Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive description logics via tableaux. J. of Automated Reasoning 41(1), 61–98 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  41. 41.
    Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting techniques for DL-lite. In: Proc. of the 22nd Int. Workshop on Description Logic (DL 2009). CEUR Electronic Workshop Proceedings, vol. 477 (2009), http://ceur-ws.org/
  42. 42.
    Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under description logic constraints. J. of Applied Logic 8(2), 186–209 (2010)CrossRefzbMATHGoogle Scholar
  43. 43.
    Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-Lite ontologies. In: Proc. of the 13th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2012), pp. 308–318 (2012)Google Scholar
  44. 44.
    Rosati, R.: On conjunctive query answering in \(\mathcal{EL}\). In: Proc. of the 20th Int. Workshop on Description Logic (DL 2007). CEUR Electronic Workshop Proceedings, vol. 250, pp. 451–458 (2007), http://ceur-ws.org/
  45. 45.
    Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 360–374. Springer, Heidelberg (2012)Google Scholar
  46. 46.
    Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2010), pp. 290–300 (2010)Google Scholar
  47. 47.
    Schmolze, J.G.: Terminological knowledge representation systems supporting n-ary terms. In: Proc. of the 1st Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1989), pp. 432–443 (1989)Google Scholar
  48. 48.
    Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, ch. 4, pp. 133–192. Elsevier Science Publishers (1990)Google Scholar
  49. 49.
    Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001)Google Scholar
  50. 50.
    Vardi, M.Y.: Why is modal logic so robustly decidable. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 149–184. American Mathematical Society (1997)Google Scholar
  51. 51.
    Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628-641. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  52. 52.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. of Computer and System Sciences 32, 183–221 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Diego Calvanese
    • 1
  1. 1.KRDB Research Centre for Knowledge and DataFree University of Bozen-BolzanoItaly

Personalised recommendations