Computing Symbolic Steady States of Boolean Networks

  • Hannes Klarner
  • Alexander Bockmayr
  • Heike Siebert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8751)

Abstract

Asymptotic behavior is often of particular interest when analyzing asynchronous Boolean networks representing biological systems such as signal transduction or gene regulatory networks. Methods based on a generalization of the steady state notion, the so-called symbolic steady states, can be exploited to investigate attractor properties as well as for model reduction techniques conserving attractors. In this paper, we propose a novel optimization-based method for computing all maximal symbolic steady states and motivate their use. n particular, we add a new result yielding a lower bound for the number of cyclic attractors and illustrate the methods with a short study of a MAPK pathway model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, R.-S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Physical Biology 9(5), 055001 (2012)Google Scholar
  2. 2.
    Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 8(5), 1393–1399 (2011)CrossRefGoogle Scholar
  3. 3.
    Siebert, H.: Analysis of discrete bioregulatory networks using symbolic steady states. Bulletin of Mathematical Biology 73, 873–898 (2011)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Crama, Y., Hammer, P.L.: Boolean functions: theory, algorithms, and applications, vol. 142. Cambridge University Press (2011)Google Scholar
  5. 5.
    Fogelman-Soulie, F.: Parallel and sequential computation on boolean networks. Theoretical Computer Science 40, 275–300 (1985)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Kauffman, S.A.: The origins of order: Self organization and selection in evolution. Oxford University Press, USA (1993)Google Scholar
  7. 7.
    Akutsu, T., Yang, Z., Hayashida, M., Tamura, T.: Integer programming-based approach to attractor detection and control of boolean networks. IEICE Transactions on Information and Systems 95(12), 2960–2970 (2012)CrossRefGoogle Scholar
  8. 8.
    Dick, R.: Quine-McCluskey two-level logic minimization method (2008), http://pypi.python.org/pypi/qm/0.2 (accessed in April 2014)
  9. 9.
    Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2014)Google Scholar
  10. 10.
    Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thieffry, D.: Integrative modelling of the influence of mapk network on cancer cell fate decision. PLoS Computational Biology 9(10), e1003286 (2013)Google Scholar
  11. 11.
    Gershenson, C.: Updating schemes in random boolean networks: Do they really matter. In: Artificial Life IX Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, pp. 238–243. MIT Press (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hannes Klarner
    • 1
  • Alexander Bockmayr
    • 1
  • Heike Siebert
    • 1
  1. 1.FB Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations