Implementation of a Cellular Automaton with Globally Switchable Rules

  • Václav Šimek
  • Richard Růžička
  • Adam Crha
  • Radek Tesař
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8751)

Abstract

Cellular automata represent a discrete model of a computational machine with the inherent concept of totally distributed state transitional function. Previous studies have indicated that well-devised type of a global influence turns out to be an important factor in terms of improving the overall efficiency of a computation process within automata. In this context, polymorphic electronics is an approach that introduces a specific way of a global control to the circuit, not by means of using a dedicated global signal but through employing an inherent environmental variable. In our case the global information is uniformly propagated through the existing voltage supply rail, which is naturally available to all individual cells of a given automaton. It seems that the suggested approach may be very useful for the implementation of enhanced cellular automata. In this paper, the real hardware implementation of a cellular automaton using polymorphic chip and the obtained experimental results are presented together with a subsequent discussion.

Keywords

Cellular automata polymorphic electronics globally controlled reconfiguration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruzicka, R.: On Bifunctional Polymorphic Gates Controlled by a Special Signal. WSEAS Transactions on Circuits 7(3), 96–101 (2008) ISSN 1109-2734Google Scholar
  2. 2.
    Stoica, A., Zebulum, R.S., Keymeulen, D.: Polymorphic electronics. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds.) ICES 2001. LNCS, vol. 2210, pp. 291–302. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Ruzicka, R., Sekanina, L., Prokop, R.: Physical demonstration of Polymorphic Self-checking Circuits. In: Proc. of the 14th IEEE On-Line Testing Symposium, pp. 31–36. IEEE CS (2008)Google Scholar
  4. 4.
    Ruzicka, R.: Dependable Controller Design using Polymorphic Counters. In: Proc. of 12th Euromicro Conference on Digital System Design, pp. 355–362. IEEE CS, Los Alamitos (2009)Google Scholar
  5. 5.
    Ruzicka, R.: Gracefully Degrading Circuit Controllers Based on Polytronics. In: Proc. of 13th Euromicro Conference on Digital System Design, pp. 809–812. IEEE CS, Los Alamitos (2010)Google Scholar
  6. 6.
    Ruzicka, R., Simek, V.: Chip Temperature Selfregulation for Digital Circuits Using Polymorphic Electronics Principles. In: Proceedings of 14th Euromicro Conference on Digital System Design, pp. 205–212. ICSP, Los Alamitos (2011)Google Scholar
  7. 7.
    Sekanina, L., Starecek, L., Kotásek, Z., Gajda, Z.: Polymorphic Gates in Design and Test of Digital Circuits. International Journal of Unconventional Computing 4(2), 125–142 (2008) ISSN 1548-7199 Google Scholar
  8. 8.
    Zebulum, R.S., Stoica, A.: Ripple Counters Controlled by Analog Voltage. NASA Tech. Briefs 30(3), 2 (2006)Google Scholar
  9. 9.
    Ruzicka, R.: New Polymorphic NAND/XOR Gate. In: Proceedings of 7th WSEAS International Conference on Applied Computer Science, pp. 192–196. WSEAS, Venice (2007)Google Scholar
  10. 10.
    Sekanina, L., Komenda, T.: Global Control in Polymorphic Cellular Automata. Journal of Cellular Automata 6(4-5), 301–321 (2011)MATHMathSciNetGoogle Scholar
  11. 11.
    Wolfram, S.: A New Kind of Science, 1197 p. Wolfram Media, Champaign (2002)Google Scholar
  12. 12.
    Kari, J.J.: Basic Concepts of Cellular Automata. In: Rozenberg, G., et al. (eds.) Handbook of Natural Computing, pp. 3–24. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Sekanina, L., Rika, R., Vaek, Z., Prokop, R., Fujcik, L.: REPOMO32 - New Reconfigurable Polymorphic Integrated Circuit for Adaptive Hardware. In: Proc. of the 2009 IEEE Symposium Series on Computational Intelligence - Workshop on Evolvable and Adaptive Hardware, pp. 39–46. IEEE CIS, Nashville (2009)CrossRefGoogle Scholar
  14. 14.
    Paasch, G., Lindner, T., Rost-Bietsch, C.: Operation and Properties of Ambipolar Organic Field-effect Transistors. Journal of Applied Physics 98(8), 084505-1–084505-13 (2005)Google Scholar
  15. 15.
    Wang, S.D., Kanai, K., Ouchi, Y., Seki, K.: Bottom contact ambipolar organic thin film transistor and organic inverter based on C60/pentacene heterostructure. Organic Electronics 7(6), 457–464 (2006)CrossRefGoogle Scholar
  16. 16.
    Chandler, S.J.: Cellular Automata with Global Control from The Wolfram Demonstrations Project (2009), http://demonstrations.wolfram.com/CellularAutomataWithGlobalControl
  17. 17.
    Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Vourkas, I., Sirakoulis, G.C.: FPGA based cellular automata for environmental modeling. In: 19th IEEE Int. Conf. Electronics, Circ. and Syst (ICECS), Seville, Spain, December 9-12, pp. 93–96 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Václav Šimek
    • 1
  • Richard Růžička
    • 1
  • Adam Crha
    • 1
  • Radek Tesař
    • 1
  1. 1.Faculty of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations