Towards a Comprehensive Understanding of Multi-state Cellular Automata

  • Jan M. Baetens
  • Bernard De Baets
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8751)


Motivated by the fact that many cellular automata (CAs) for describing biological, physical or chemical processes are built upon more than two states, whereas most the majority of results on the stability of CAs is restricted to two-state CAs, we show in this paper how non-directional Lyapunov exponents can be used to assess the stability of multi-state CAs. Moreover, we pay particular attention to the different types of defects that may emerge during the evolution of such CAs from a single initial defect of a given type. Numerical results are presented for the family of three-state totalistic CAs.


Lyapunov Exponent Cellular Automaton Excitable Medium Initial Defect Maximum Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrecut, M.: A simple three-states cellular automaton for modelling excitable media. International Journal of Modern Physics B 12, 601–607 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baetens, J.M., De Baets, B.: Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians. Chaos 20, 033112 (2010)Google Scholar
  3. 3.
    Bagnoli, F., Rechtman, R., Ruffo, S.: Damage spreading and Lyapunov exponents in cellular automata. Physics Letters A 172, 34–38 (1992)CrossRefGoogle Scholar
  4. 4.
    da Silva, R., Alves Jr., N.: Dynamic exponents of a probabilistic three-state cellular automaton. Physica A 350, 263–276 (2005)CrossRefGoogle Scholar
  5. 5.
    Fisch, R., Gravner, J.: One-dimensional deterministic Greenberg-Hastings models. Complex Systems 9, 329–348 (1995)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Fisch, R., Gravner, J., Griffeath, D.: Metastability in the Greenberg-Hastings model. The Annals of Applied Probability 3, 329–348 (1993)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics 34, 515–523 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Langton, C.: Computation at the edge of chaos. Physica D 42, 12–37 (1990)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on Information Theory 22, 75–81 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Peltomäki, M., Rost, M., Alava, M.: Characterizing spatiotemporal patterns in three-state lattice models. Journal of Statistical Mechanics: Theory and Experiment P02042 (2009)Google Scholar
  11. 11.
    Potts, R.B.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Reichenbach, T., Mobilia, M., Frey, E.: Self-organization of mobile populations in cyclic competition. Journal of Theoretical Biology 254, 368–383 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling 133, 209–223 (2000)CrossRefGoogle Scholar
  14. 14.
    von Neumann, J.: The general and logical theory of automata. In: Jeffres, L.A. (ed.) The Hixon Symposium on Cerebral Mechanisms in Behaviour, pp. 1–41. John Wiley & Sons, Pasadena (1951)Google Scholar
  15. 15.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Champaign (2002)zbMATHGoogle Scholar
  17. 17.
    Wu, F.: The Potts model. Reviews of Modern Physics 54, 235–268 (1982)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wuensche, A.: Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. International Journal of Unconventional Computing 1, 375–398 (2005)Google Scholar
  19. 19.
    Zanette, D.H.: Multistate cellular automaton for reaction-diffusion processes. Physical Review A 46, 7573–7577 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jan M. Baetens
    • 1
  • Bernard De Baets
    • 1
  1. 1.KERMIT, Department of Mathematical Modelling, Statistics and BioinformaticsGhent UniversityGentBelgium

Personalised recommendations