Modeling Rainfall Features Dynamics in a DEM Satellite Image with Cellular Automata

  • Moisés Espínola
  • José Antonio Piedra-Fernández
  • Rosa Ayala
  • Luis Iribarne
  • Saturnino Leguizamón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8751)

Abstract

Cellular automata have been widely used in the field of remote sensing for simulating natural phenomena over two-dimensional satellite images. Simulations on DEM (Digital Elevation Model), three-dimensional satellite images, are very rare. This paper presents a study of modeling and simulation of the weather phenomenon of precipitation over DEM satellite images through a new algorithm, RACA (RAinfall with Cellular Automata). The aim of RACA is to obtain, from the simulation, numerical and 3D results related to the water level that allow us to make decisions on important issues such as avoiding the destruction of human life and property from future natural disasters, establishing future urbanized areas away from locations with high probability of flooding or estimating the future water supply for arid regions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balzter, H., Braun, P., Kühler, W.: Cellular automata models for vegetation dynamics. Ecological Modelling 107, 113–125 (1998)CrossRefGoogle Scholar
  2. 2.
    Barret, E.C., Curtis, L.F.: Introduction to environmental remote sensing. Cheltenham Stanley Thornes Publishers Ltd. (1999)Google Scholar
  3. 3.
    Cheng, J., Masser, I.: Cellular automata based temporal process understanding of urban growth. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 325–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Chopard, B., Lagrava, D.: A cellular automata model for species competition and evolution. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 277–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Chuvieco, E., Huete, A.: Fundamentals of satellite remote sensing. CRC Press (2010)Google Scholar
  6. 6.
    Coppola, E., Tomassetti, B., Mariotti, L., Verdecchia, M., Visconti, G.: Cellular automata algorithms for drainage network extraction and rainfall data assimilation. Hydrological Sciences-Journal-des Sciences Hydrologiques 52(3), 579–592 (2007)CrossRefGoogle Scholar
  7. 7.
    D’Ambrosio, D., Di Gregorio, S., Gabriele, S., Gaudio, R.: A cellular automata model for soil erosion by water. Physics and Chemistry of the Earth (B) 26(1), 33–39 (2001)CrossRefGoogle Scholar
  8. 8.
    Dottori, F., Todini, E.: Developments of a flood inundation model based on the cellular automata approach: testing different methods to improve model performance. Physics and Chemistry of the Earth 36, 266–280 (2011)Google Scholar
  9. 9.
    Dzwinel, W.: A cellular automata model of population infected by periodic plague. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 464–473. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Guzman, O.F., Gómez, I.D.: Fundamentos físicos de teledetección. Instituto Geográfico Agustin Codazzi IGAC (2007)Google Scholar
  11. 11.
    Kari, J.: Theory of cellular automata: a survey. Theoretical Computer Science 334, 3–33 (2005)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Leguizamón, S., Espínola, M., Ayala, R., Iribarne, L., Menenti, M.: Characterization of texture in images by using a cellular automata approach. In: Lytras, M.D., Ordonez de Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds.) WSKS 2010, Part II. CCIS, vol. 112, pp. 522–533. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Leguizamón, S.: Modelling land features dynamics by using cellular automata techniques. In: Proceedings of the ISPR Technical Comission 7 Mid-Term Symposium “From Pixels to Processes”, pp. 497–501 (2006)Google Scholar
  14. 14.
    Leguizamón, S.: Simulation of snow-cover dynamics using the cellular automata approach. In: Proc. of the 8th Int. Symposium on High Mountain Remote Sensing Cartography, pp. 87–91 (2005)Google Scholar
  15. 15.
    Lobitz, B., Beck, L., Huq, A., Woods, B., Fuchs, G., Faruque, A., Colwell, R.: Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. National Academic Sci. USA 97(4), 1438–1443 (2000)CrossRefGoogle Scholar
  16. 16.
    Muzy, A., Innocenti, E., Aiello, A., Santucci, J.F., Santonio, P.A., Hill, D.: Modelling and simulation of ecological propagation processes: application to fire spread. Environmental Modelling and Software 20, 827–842 (2005)CrossRefGoogle Scholar
  17. 17.
    Rees, W.G.: Physical principles of remote sensing, 2nd edn. Cambridge University Press (2001)Google Scholar
  18. 18.
    Rinaldi, P., Dalponte, D., Vénere, M., Clausse, A.: Cellular automata algorithm for simulation of surface flows in large plains. Simulation Modelling Practice and Theory 15, 315–327 (2007)Google Scholar
  19. 19.
    Spataro, W., D’Ambrosio, D., Rongo, R., Trunfio, G.A.: An evolutionary approach for modelling lava flows through cellular automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 725–734. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Wolfram, S.: A new kind of science. Wolfram Media Inc. (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Moisés Espínola
    • 1
  • José Antonio Piedra-Fernández
    • 1
  • Rosa Ayala
    • 1
  • Luis Iribarne
    • 1
  • Saturnino Leguizamón
    • 2
  1. 1.Applied Computing GroupUniversity of AlmeríaAlmeríaSpain
  2. 2.Regional FacultyNational Technological UniversityMendozaArgentina

Personalised recommendations