Overview of Cellular Automaton Models for Corrosion

  • Cristian Felipe Pérez-Brokate
  • Dung di Caprio
  • Damien Féron
  • Jacques De Lamare
  • Annie Chaussé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8751)


A review of corrosion process modeling using cellular automata methods is presented. This relatively new and growing approach takes into account the stochastic nature of the phenomena and uses physico-chemical rules to make predictions at a mesoscopic scale. Milestone models are analyzed and perspectives are established.


Cellular Automaton Corrosion Pitting Model Mesoscopic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landolt, D.: Corrosion and surface chemistry of metals. EPFL Press, Lausanne (2007)CrossRefGoogle Scholar
  2. 2.
    Ailor, W.H., Electrochemical Society (eds.): Atmospheric corrosion. Wiley, New York (1982)Google Scholar
  3. 3.
    Szklarska-Smialowska, Z.: Pitting corrosion of aluminum. Corrosion Science 41(9), 1743–1767 (1999)CrossRefGoogle Scholar
  4. 4.
    Bartosik, L., Di Caprio, D., Stafiej, J.: Cellular automata approach to corrosion and passivity phenomena. Pure and Applied Chemistry 85(1), 247–256 (2013)Google Scholar
  5. 5.
    Okada, T.: A theory of perturbation initiated pitting. Journal of the Electrochemical Society 132(3), 537–544 (1985)CrossRefGoogle Scholar
  6. 6.
    Beck, T.R., Grens, E.A.: An electrochemical mass transport kinetic model for stress corrosion cracking of titanium. Journal of the Electrochemical Society 116(2), 177–184 (1969)CrossRefGoogle Scholar
  7. 7.
    Bataillon, C., Bouchon, F., Chainais-Hillairet, C., Fuhrmann, J., Hoarau, E., Touzani, R.: Numerical methods for the simulation of a corrosion model with moving oxide layer. Journal of Computational Physics 231(18), 6213–6231 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Frankel, G.S.: Pitting corrosion of metals a review of the critical factors. Journal of the Electrochemical Society 145(6), 2186–2198 (1998)CrossRefGoogle Scholar
  9. 9.
    Caleyo, F., Velázquez, J., Valor, A., Hallen, J.: Probability distribution of pitting corrosion depth and rate in underground pipelines: A monte carlo study. Corrosion Science 51(9), 1925–1934 (2009)CrossRefGoogle Scholar
  10. 10.
    Malki, B., Baroux, B.: Computer simulation of the corrosion pit growth. Corrosion Science 47(1), 171–182 (2005)CrossRefGoogle Scholar
  11. 11.
    Reigada, R., Sagués, F., Costa, J.M.: A monte carlo simulation of localized corrosion. The Journal of Chemical Physics 101(3), 2329–2337 (1994)CrossRefGoogle Scholar
  12. 12.
    Murer, N., Buchheit, R.G.: Stochastic modeling of pitting corrosion in aluminum alloys. Corrosion Science 69, 139–148 (2013)CrossRefGoogle Scholar
  13. 13.
    Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica D: Nonlinear Phenomena 10(1-2), 117–127 (1984)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Marcus, P., Maurice, V., Strehblow, H.H.: Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure. Corrosion Science 50(9), 2698–2704 (2008)CrossRefGoogle Scholar
  15. 15.
    Meakin, P., Jøssang, T., Feder, J.: Simple passivation and depassivation model for pitting corrosion. Physical Review E 48(4), 2906–2916 (1993)CrossRefGoogle Scholar
  16. 16.
    Balázs, L., Gouyet, J.F.: Two-dimensional pitting corrosion of aluminium thin layers. Physica A: Statistical Mechanics and its Applications 217(3-4), 319–338 (1995)CrossRefGoogle Scholar
  17. 17.
    Córdoba-Torres, P., Nogueira, R.P., de Miranda, L., Brenig, L., Wallenborn, J., Fairén, V.: Cellular automaton simulation of a simple corrosion mechanism: mesoscopic heterogeneity versus macroscopic homogeneity. Electrochimica Acta 46(19), 2975–2989 (2001)CrossRefGoogle Scholar
  18. 18.
    Córdoba-Torres, P., Nogueira, R.P., Fairén, V.: Forecasting interface roughness from kinetic parameters of corrosion mechanisms. Journal of Electroanalytical Chemistry 529(2), 109–123 (2002)CrossRefGoogle Scholar
  19. 19.
    Córdoba-Torres, P., Nogueira, R.P., Fairén, V.: Fractional reaction order kinetics in electrochemical systems involving single-reactant, bimolecular desorption reactions. Journal of Electroanalytical Chemistry 560(1), 25–33 (2003)CrossRefGoogle Scholar
  20. 20.
    Pourbaix, M., Staehle, R.W., Pourbaix, M., Pourbaix, M.: Lectures on electrochemical corrosion, vol. 870. Springer (1973)Google Scholar
  21. 21.
    Taleb, A., Stafiej, J., Chaussé, A., Messina, R., Badiali, J.: Simulations of film growth and diffusion during the corrosion process. Journal of Electroanalytical Chemistry 500(1-2), 554–561 (2001)CrossRefGoogle Scholar
  22. 22.
    Di Caprio, D., Vautrin-Ul, C., Stafiej, J., Saunier, J., Chaussé, A., Féron, D., Badiali, J.P.: Morphology of corroded surfaces: Contribution of cellular automaton modelling. Corrosion Science 53(1), 418–425 (2011)CrossRefGoogle Scholar
  23. 23.
    Saunier, J., Dymitrowska, M., Chaussé, A., Stafiej, J., Badiali, J.: Diffusion, interactions and universal behavior in a corrosion growth model. Journal of Electroanalytical Chemistry 582(1-2), 267–273 (2005)CrossRefGoogle Scholar
  24. 24.
    Di Caprio, D., Vautrin-Ul, C., Stafiej, J., Chaussé, A., Féron, D., Badiali, J.P.: Cellular automata approach for morphological evolution of localised corrosion. Corrosion Engineering, Science and Technology 46(2), 223–227 (2011)CrossRefGoogle Scholar
  25. 25.
    Lan, K.C., Chen, Y., Yeh, T.K., Hung, T.C., Liu, M.L., Yu, G.P.: Scale removal oxidation behavior of metal in supercritical water modeled by cellular automaton. Progress in Nuclear Energy 53(7), 1034–1038 (2011)CrossRefGoogle Scholar
  26. 26.
    Tan, T., Chen, Y.: Scale removal cellular automaton oxidation models of metals in lead bismuth eutectic. Journal of Electroanalytical Chemistry 626(1-2), 89–97 (2009)CrossRefGoogle Scholar
  27. 27.
    Lan, K.C., Chen, Y., Hung, T.C., Tung, H.M., Yu, G.P.: Simulation of the growth of oxide layer of stainless steels with chromium using cellular automaton model: Verification and parameter study. Computational Materials Science 77, 139–144 (2013)CrossRefGoogle Scholar
  28. 28.
    Vautrin-Ul, C., Chausse, A., Stafiej, J., Badiali, J.: Simulations of corrosion processes with spontaneous separation of cathodic and anodic reaction zones. Polish Journal of Chemistry 78(9), 1795–1810 (2004)Google Scholar
  29. 29.
    Chopard, B., Droz, M.: Cellular automata modeling of physical systems. Cambridge University Press, Cambridge (2005)Google Scholar
  30. 30.
    Vautrin-Ul, C., Taleb, A., Stafiej, J., Chaussé, A., Badiali, J.: Mesoscopic modelling of corrosion phenomena: Coupling between electrochemical and mechanical processes, analysis of the deviation from the faraday law. Electrochimica Acta 52(17), 5368–5376 (2007)CrossRefGoogle Scholar
  31. 31.
    Aarão Reis, F.D.A., Stafiej, J., Badiali, J.P.: Scaling theory in a model of corrosion and passivation. The Journal of Physical Chemistry B 110(35), 17554–17562 (2006)CrossRefGoogle Scholar
  32. 32.
    Li, L., Li, X.G., Dong, C.F., Cheng, Y.F.: Cellular automaton model for simulation of metastable pitting. Corrosion Engineering, Science and Technology 46(4), 340–345 (2011)CrossRefGoogle Scholar
  33. 33.
    Li, L., Li, X., Dong, C., Huang, Y.: Computational simulation of metastable pitting of stainless steel. Electrochimica Acta 54(26), 6389–6395 (2009)CrossRefGoogle Scholar
  34. 34.
    Wang, H., Han, E.H.: Mesoscopic simulation of diffusion characteristics in the corrosion film. Journal of Materials Science & Technology 28(5), 427–432 (2012)CrossRefGoogle Scholar
  35. 35.
    Wang, H., Han, E.H.: Simulation of metastable corrosion pit development under mechanical stress. Electrochimica Acta 90, 128–134 (2013)CrossRefGoogle Scholar
  36. 36.
    Lishchuk, S.V., Akid, R., Worden, K., Michalski, J.: A cellular automaton model for predicting intergranular corrosion. Corrosion Science 53(8), 2518–2526 (2011)CrossRefGoogle Scholar
  37. 37.
    Taleb, A., Stafiej, J.: Numerical simulation of the effect of grain size on corrosion processes: Surface roughness oscillation and cluster detachment. Corrosion Science 53(8), 2508–2513 (2011)CrossRefGoogle Scholar
  38. 38.
    Van der Weën, P., Zimer, A.M., Pereira, E.C., Mascaro, L.H., Bruno, O.M., De Baets, B.: Modeling pitting corrosion by means of a 3D discrete stochastic model. Corrosion Science 82, 133–144 (2014)CrossRefGoogle Scholar
  39. 39.
    Pidaparti, R.M., Fang, L., Palakal, M.J.: Computational simulation of multi-pit corrosion process in materials. Computational Materials Science 41(3), 255–265 (2008)CrossRefGoogle Scholar
  40. 40.
    Stafiej, J., Di Caprio, D., Bartosik, L.: Corrosion passivation processes in a cellular automata based simulation study. The Journal of Supercomputing 65(2), 697–709 (2013)CrossRefGoogle Scholar
  41. 41.
    Marcus, P.: Corrosion Mechanisms in Theory and Practice, 3rd edn. CRC Press, Boca Raton (2011)CrossRefGoogle Scholar
  42. 42.
    Ghahari, S.M., Davenport, A.J., Rayment, T., Suter, T., Tinnes, J.P., Padovani, C., Hammons, J.A., Stampanoni, M., Marone, F., Mokso, R.: In situ synchrotron x-ray microtomography study of pitting corrosion in stainless steel. Corrosion Science 53(9), 2684–2687 (2011)CrossRefGoogle Scholar
  43. 43.
    Macdonald, D.D.: The history of the point defect model for the passive state: A brief review of film growth aspects. Electrochimica Acta 56(4), 1761–1772 (2011)CrossRefGoogle Scholar
  44. 44.
    Vautrin-Ul, C., Mendy, H., Taleb, A., Chaussé, A., Stafiej, J., Badiali, J.: Numerical simulations of spatial heterogeneity formation in metal corrosion. Corrosion Science 50(8), 2149–2158 (2008)CrossRefGoogle Scholar
  45. 45.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cristian Felipe Pérez-Brokate
    • 1
  • Dung di Caprio
    • 2
  • Damien Féron
    • 1
    • 3
  • Jacques De Lamare
    • 1
  • Annie Chaussé
    • 3
  1. 1.CEA, DEN, DANS, DPC, Service de Corrosion et du Comportement des Matériaux dans leur EnvironnementGif sur Yvette CedexFrance
  2. 2.Institut de Recherche de Chimie Paris, CNRS – Chimie ParisTechParisFrance
  3. 3.Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-CEA-Université d’Evry Val d’EssonneEvryFrance

Personalised recommendations