Improving Inconsistency Resolution by Considering Global Conflicts

  • Cristhian Ariel David Deagustini
  • Maria Vanina Martínez
  • Marcelo A. Falappa
  • Guillermo Ricardo Simari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8720)


Over the years, inconsistency management has caught the attention of researchers of different areas. Inconsistency is a problem that arises in many different scenarios, for instance, ontology development or knowledge integration. In such settings, it is important to have adequate automatic tools for handling potential conflicts. Here we propose a novel approach to belief base consolidation based on a refinement of kernel contraction that accounts for the relation among kernels using clusters. We define cluster contraction based consolidation operators as the contraction by falsum on a belief base using cluster incision functions, a refinement of (smooth) kernel incision functions. A cluster contraction-based approach to belief bases consolidation can successfully obtain a belief base satisfying the expected consistency requirement. Also, we show that the application of cluster contraction-based consolidation operators satisfy minimality regarding loss of information and are equivalent to operators based on maxichoice contraction.


Inconsistency Management Belief Consolidation Minimal Loss of Information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases. In: PODS, pp. 68–79 (1999)Google Scholar
  3. 3.
    Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases consisting of first-order analysis. Comput. Intell. 8, 45–71 (1992)CrossRefGoogle Scholar
  4. 4.
    Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: IJCAI, pp. 640–645 (1993)Google Scholar
  5. 5.
    Benferhat, S., Dubois, D., Lang, J., Prade, H., Saffiotti, A., Smets, P.: A general approach for inconsistency handling and merging information in prioritized knowledge bases. In: KR, pp. 466–477 (1998)Google Scholar
  6. 6.
    Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: A comparative study part 1: The flat case. Studia Logica 58(1), 17–45 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning. In: IJCAI, pp. 1043–1048 (1989)Google Scholar
  8. 8.
    Delgrande, J., Jin, Y.: Parallel belief revision: Revising by sets of formulas. Artif. Intell. 176(1), 2223–2245 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Falappa, M., Fermé, E., Kern-Isberner, G.: On the logic of theory change: Relations between incision and selection functions. In: ECAI, pp. 402–406 (2006)Google Scholar
  10. 10.
    Hansson, S.: Belief Base Dynamics. Ph.D. thesis, Uppsala University, Department of Philosophy, Uppsala, Sweden (1991)Google Scholar
  11. 11.
    Hansson, S.: Kernel contraction. J. Symb. Log. 59(3), 845–859 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hansson, S.: A Textbook of Belief Dynamics: Solutions to Exercises. Kluwer Academic Publishers, Norwell (2001)Google Scholar
  13. 13.
    Hué, J., Würbel, E., Papini, O.: Removed sets fusion: Performing off the shelf. In: ECAI, vol. 178, pp. 94–98 (2008)Google Scholar
  14. 14.
    Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency values. Artif. Intell. 174(14), 1007–1026 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Lozinskii, E.: Information and evidence in logic systems. JETAI 6(2), 163–193 (1994)zbMATHGoogle Scholar
  16. 16.
    Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in Datalog+/- ontologies. In: ECAI, pp. 558–563 (2012)Google Scholar
  17. 17.
    Martinez, M.V., Parisi, F., Pugliese, A., Simari, G.I., Subrahmanian, V.S.: Policy-based inconsistency management in relational databases. IJAR 55(2), 501–528 (2014)MathSciNetGoogle Scholar
  18. 18.
    Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How dirty is your relational database? An axiomatic approach. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 103–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Peppas, P.: Belief revision. In: Handbook of Knowledge Representation, ch. 8, pp. 317–359. Foundations of AI, Elsevier (2008)Google Scholar
  20. 20.
    Ribeiro, M.M.: Belief Revision in Non-Classical Logics. Springer Briefs in Computer Science. Springer (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cristhian Ariel David Deagustini
    • 1
    • 3
  • Maria Vanina Martínez
    • 2
  • Marcelo A. Falappa
    • 1
    • 3
  • Guillermo Ricardo Simari
    • 1
  1. 1.Artificial Intelligence Research and Development, Laboratory Department of Computer Science and EngineeringUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK
  3. 3.Consejo Nacional de Investigaciones Científicas y TécnicasCiudad Autónoma de Buenos AiresRepública Argentina

Personalised recommendations